Dr. Ben Breitung
- Group Leader
- Nanomaterials for Electronic and Energy Applications
- Research Unit: Electronic Devices and Systems
- Room: 0-305
- Phone: +49 721 608-23109
- ben breitung ∂ kit edu
Publications
2024
-
Dealing with Missing Angular Sections in NanoCT Reconstructions of Low Contrast Polymeric Samples Employing a Mechanical In Situ Loading Stage
Debastiani, R.; Kurpiers, C. M.; Lemma, E. D.; Breitung, B.; Bastmeyer, M.; Schwaiger, R.; Gumbsch, P.
2024. Microscopy Research and Technique. doi:10.1002/jemt.24746 -
Delithiation-induced secondary phase formation in Li-rich cathode materials
Ting, Y.-Y.; Breitung, B.; Schweidler, S.; Wang, J.; Eikerling, M.; Kowalski, P. M.; Guillon, O.; Kaghazchi, P.
2024. Journal of Materials Chemistry A. doi:10.1039/D4TA06030J -
Improving upon rechargeable battery technologies: On the role of high-entropy effects
Zhou, Z.; Ma, Y.; Brezesinski, T.; Breitung, B.; Wu, Y.; Ma, Y.
2024. Energy & Environmental Science. doi:10.1039/D4EE03708A -
Electron microscopic investigation of photothermal laser printed ZnO nanoarchitectures
Kraft, K.; Grünewald, L.; Quintilla, A.; Müller, E.; Steurer, M.; Somers, P.; Kraus, S.; Feist, F.; Weinert, B.; Breitung, B.; Marques, G. C.; Dehnen, S.; Feldmann, C.; Kowollik, C. B.; Wegener, M.; Aghassi, J.; Eggeler, Y.
2024. (K. Qvortrup & K. Weede, Eds.) BIO Web of Conferences, 129, Article no: 24028. doi:10.1051/bioconf/202412924028 -
Layered high-entropy sulfides: boosting electrocatalytic performance for hydrogen evolution reaction by cocktail effects
Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Chen, D.-H.; Fichtner, M.; Hahn, H.; Aghassi-Hagmann, J.; Breitung, B.; Schweidler, S.
2024. Materials Futures, 3 (4), Article no: 045102. doi:10.1088/2752-5724/ad8a78 -
Utilizing High-Capacity Spinel-Structured High-Entropy Oxide (CrMnFeCoCu)₃O₄ as a Graphite Alternative in Lithium-Ion Batteries
Oroszová, L.; Csík, D.; Baranová, G.; Bortel, G.; Džunda, R.; Temleitner, L.; Hagarová, M.; Breitung, B.; Saksl, K.
2024. Crystals, 14 (3), Article no: 218. doi:10.3390/cryst14030218 -
Improved Performance of High‐Entropy Disordered Rocksalt Oxyfluoride Cathode by Atomic Layer Deposition Coating for Li‐Ion Batteries
Zhou, B.; An, S.; Kitsche, D.; Dreyer, S. L.; Wang, K.; Huang, X.; Thanner, J.; Bianchini, M.; Brezesinski, T.; Breitung, B.; Hahn, H.; Wang, Q.
2024. Small Structures, 5 (7), Art.-Nr.: 2400005. doi:10.1002/sstr.202400005 -
Nanozymes for biomedical applications: Multi‐metallic systems may improve activity but at the cost of higher toxicity?
Phan-Xuan, T.; Breitung, B.; Dailey, L. A.
2024. WIREs Nanomedicine and Nanobiotechnology, 16 (4), Article no: e1981. doi:10.1002/wnan.1981 -
A Comprehensive Guide to Fully Inkjet‐Printed IGZO Transistors
Magnarin, L.; Breitung, B.; Aghassi-Hagmann, J.
2024. Advanced Electronic Materials, Art.-Nr.: 2400478. doi:10.1002/aelm.202400478 -
Leveraging Entropy and Crystal Structure Engineering in Prussian Blue Analogue Cathodes for Advancing Sodium-Ion Batteries
He, Y.; Dreyer, S. L.; Akçay, T.; Diemant, T.; Mönig, R.; Ma, Y.; Tang, Y.; Wang, H.; Lin, J.; Schweidler, S.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Ma, Y.
2024. ACS Nano, 18 (35), 24441–24457. doi:10.1021/acsnano.4c07528 -
Photonic Synthesis and Coating of High‐Entropy Oxide on Layered Ni‐Rich Cathode Particles
Cui, Y.; Tang, Y.; Lin, J.; Wang, J.; Hahn, H.; Breitung, B.; Schweidler, S.; Brezesinski, T.; Botros, M.
2024. Small Structures, 5 (11), Art.-Nr.: 2400197. doi:10.1002/sstr.202400197 -
Using the High-Entropy Approach to Obtain Multimetal Oxide Nanozymes: Library Synthesis, In Silico Structure–Activity, and Immunoassay Performance
Phan-Xuan, T.; Schweidler, S.; Hirte, S.; Schüller, M.; Lin, L.; Khandelwal, A.; Wang, K.; Schützke, J.; Reischl, M.; Kübel, C.; Hahn, H.; Bello, G.; Kirchmair, J.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.; Dailey, L. A.
2024. ACS Nano, 18 (29), 19024–19037. doi:10.1021/acsnano.4c03053 -
High-entropy and compositionally complex battery materials
Strauss, F.; Botros, M.; Breitung, B.; Brezesinski, T.
2024. Journal of Applied Physics, 135 (12), Art.-Nr.: 120901. doi:10.1063/5.0200031 -
Entropy-assisted epitaxial coating
Schweidler, S.; Brezesinski, T.; Breitung, B.
2024. Nature Energy, 9 (3), 240–241. doi:10.1038/s41560-024-01468-z -
High-entropy materials for energy and electronic applications
Schweidler, S.; Botros, M.; Strauss, F.; Wang, Q.; Ma, Y.; Velasco, L.; Cadilha Marques, G.; Sarkar, A.; Kübel, C.; Hahn, H.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.
2024. Nature Reviews Materials, 9 (4), 266–281. doi:10.1038/s41578-024-00654-5 -
Accelerating Materials Discovery: Automated Identification of Prospects from X‐Ray Diffraction Data in Fast Screening Experiments
Schuetzke, J.; Schweidler, S.; Muenke, F. R.; Orth, A.; Khandelwal, A. D.; Breitung, B.; Aghassi-Hagmann, J.; Reischl, M.
2024. Advanced Intelligent Systems, 6 (3), Art.-Nr.: 2300501. doi:10.1002/aisy.202300501 -
Entropy‐Mediated Stable Structural Evolution of Prussian White Cathodes for Long‐Life Na‐Ion Batteries
He, Y.; Dreyer, S. L.; Ting, Y.-Y.; Ma, Y.; Hu, Y.; Goonetilleke, D.; Tang, Y.; Diemant, T.; Zhou, B.; Kowalski, P. M.; Fichtner, M.; Hahn, H.; Aghassi-Hagmann, J.; Brezesinski, T.; Breitung, B.; Ma, Y.
2024. Angewandte Chemie International Edition, 63 (7), Art.-Nr.: e202315371. doi:10.1002/anie.202315371 -
Inkjet‐Printed Tungsten Oxide Memristor Displaying Non‐Volatile Memory and Neuromorphic Properties
Hu, H.; Scholz, A.; Dolle, C.; Zintler, A.; Quintilla, A.; Liu, Y.; Tang, Y.; Breitung, B.; Marques, G. C.; Eggeler, Y. M. M.; Aghassi-Hagmann, J.
2024. Advanced Functional Materials, 34 (20), Art.Nr.: 2302290. doi:10.1002/adfm.202302290
2023
-
Evaluation of electrospun spinel-type high-entropy (Cr₀.₂Mn₀.₂Fe₀.₂Co₀.₂Ni₀.₂)₃O₄, (Cr₀.₂Mn₀.₂Fe₀.₂Co₀.₂Zn₀.₂)₃O₄ and (Cr₀.₂Mn₀.₂Fe₀.₂Ni₀.₂Zn₀.₂)₃O₄ oxide nanofibers as electrocatalysts for oxygen evolution in alkaline medium
Triolo, C.; Schweidler, S.; Lin, L.; Pagot, G.; Di Noto, V.; Breitung, B.; Santangelo, S.
2023. Energy Advances, 2 (5), 667–678. doi:10.1039/D3YA00062A -
Fully Printed Electrolyte‐Gated Transistor Formed in a 3D Polymer Reservoir with Laser Printed Drain/Source Electrodes (Adv. Mater. Technol. 22/2023)
Cadilha Marques, G.; Yang, L.; Liu, Y.; Wollersen, V.; Scherer, T.; Breitung, B.; Wegener, M.; Aghassi-Hagmann, J.
2023. Advanced Materials Technologies, 8 (22), Art.-Nr.: 2370121. doi:10.1002/admt.202370121 -
Printed Electronic Devices and Systems for Interfacing with Single Cells up to Organoids
Saghafi, M. K.; Vasantham, S. K.; Hussain, N.; Mathew, G.; Colombo, F.; Schamberger, B.; Pohl, E.; Marques, G. C.; Breitung, B.; Tanaka, M.; Bastmeyer, M.; Selhuber-Unkel, C.; Schepers, U.; Hirtz, M.; Aghassi-Hagmann, J.
2023. Advanced Functional Materials, 33 (51), Art.-Nr.: 2308613. doi:10.1002/adfm.202308613 -
High entropy molybdate-derived FeOOH catalyzes oxygen evolution reaction in alkaline media
Lee, S.; Bai, L.; Jeong, J.; Stenzel, D.; Schweidler, S.; Breitung, B.
2023. Electrochimica Acta, 463, 142775. doi:10.1016/j.electacta.2023.142775 -
High-Entropy Composite Coating Based on AlCrFeCoNi as an Anode Material for Li-Ion Batteries
Csík, D.; Baranová, G.; Džunda, R.; Zalka, D.; Breitung, B.; Hagarová, M.; Saksl, K.
2023. Coatings, 13 (7), 1219. doi:10.3390/coatings13071219 -
Fully Printed Electrolyte‐Gated Transistor Formed in a 3D Polymer Reservoir with Laser Printed Drain/Source Electrodes
Cadilha Marques, G.; Yang, L.; Liu, Y.; Wollersen, V.; Scherer, T.; Breitung, B.; Wegener, M.; Aghassi-Hagmann, J.
2023. Advanced Materials Technologies, 8 (22), Art.-Nr.: 2300893. doi:10.1002/admt.202300893 -
High-entropy hexacyanoferrates as robust cathode active materials for sodium storage
Ma, Y.; Brezesinski, T.; Breitung, B.; Ma, Y.
2023. Matter, 6 (2), 313–315. doi:10.1016/j.matt.2023.01.008 -
High‐Entropy Sulfides as Highly Effective Catalysts for the Oxygen Evolution Reaction
Lin, L.; Ding, Z.; Karkera, G.; Diemant, T.; Kante, M. V. V.; Agrawal, D.; Hahn, H.; Aghassi-Hagmann, J.; Fichtner, M.; Breitung, B.; Schweidler, S.
2023. Small Structures, 4 (9), Art.-Nr.: 2300012. doi:10.1002/sstr.202300012 -
High‐Throughput Screening of High‐Entropy Fluorite‐Type Oxides as Potential Candidates for Photovoltaic Applications
Kumbhakar, M.; Khandelwal, A.; Jha, S. K.; Kante, M. V.; Keßler, P.; Lemmer, U.; Hahn, H.; Aghassi-Hagmann, J.; Colsmann, A.; Breitung, B.; Velasco, L.; Schweidler, S.
2023. Advanced Energy Materials, 13 (24), Art.-Nr.: 2204337. doi:10.1002/aenm.202204337 -
Synergy of cations in high entropy oxide lithium ion battery anode
Wang, K.; Hua, W.; Huang, X.; Stenzel, D.; Wang, J.; Ding, Z.; Cui, Y.; Wang, Q.; Ehrenberg, H.; Breitung, B.; Kübel, C.; Mu, X.
2023. Nature Communications, 14, Art.-Nr.: 1487. doi:10.1038/s41467-023-37034-6
2022
-
P2-type layered high-entropy oxides as sodium-ion cathode materials
Wang, J.; Dreyer, S. L.; Wang, K.; Ding, Z.; Diemant, T.; Karkera, G.; Ma, Y.; Sarkar, A.; Zhou, B.; Gorbunov, M. V.; Omar, A.; Mikhailova, D.; Presser, V.; Fichtner, M.; Hahn, H.; Brezesinski, T.; Breitung, B.; Wang, Q.
2022. Materials Futures, 1 (3), Art.Nr. 035104. doi:10.1088/2752-5724/ac8ab9 -
Synthesis of perovskite-type high-entropy oxides as potential candidates for oxygen evolution
Schweidler, S.; Tang, Y.; Lin, L.; Karkera, G.; Alsawaf, A.; Bernadet, L.; Breitung, B.; Hahn, H.; Fichtner, M.; Tarancón, A.; Botros, M.
2022. Frontiers in Energy Research, 10, Art.-Nr.: 983979. doi:10.3389/fenrg.2022.983979 -
High entropy fluorides as conversion cathodes with tailorable electrochemical performance
Cui, Y.; Sukkurji, P. A.; Wang, K.; Azmi, R.; Nunn, A. M.; Hahn, H.; Breitung, B.; Ting, Y.-Y.; Kowalski, P. M.; Kaghazchi, P.; Wang, Q.; Schweidler, S.; Botros, M.
2022. Journal of Energy Chemistry, 72, 342–351. doi:10.1016/j.jechem.2022.05.032 -
High-entropy spinel-structure oxides as oxygen evolution reaction electrocatalyst
Stenzel, D.; Zhou, B.; Okafor, C.; Kante, M. V.; Lin, L.; Melinte, G.; Bergfeldt, T.; Botros, M.; Hahn, H.; Breitung, B.; Schweidler, S.
2022. Frontiers in Energy Research, 10, Art.-Nr.: 942314. doi:10.3389/fenrg.2022.942314 -
Resolving the Role of Configurational Entropy in Improving Cycling Performance of Multicomponent Hexacyanoferrate Cathodes for Sodium‐Ion Batteries
Ma, Y.; Hu, Y.; Pramudya, Y.; Diemant, T.; Wang, Q.; Goonetilleke, D.; Tang, Y.; Zhou, B.; Hahn, H.; Wenzel, W.; Fichtner, M.; Ma, Y.; Breitung, B.; Brezesinski, T.
2022. Advanced Functional Materials, 32 (34), Art.Nr. 2202372. doi:10.1002/adfm.202202372 -
Acoustic Emission Monitoring of High-Entropy Oxyfluoride Rock-Salt Cathodes during Battery Operation
Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
2022. Coatings, 12 (3), 402. doi:10.3390/coatings12030402 -
Time‐Dependent Cation Selectivity of Titanium Carbide MXene in Aqueous Solution
Wang, L.; Torkamanzadeh, M.; Majed, A.; Zhang, Y.; Wang, Q.; Breitung, B.; Feng, G.; Naguib, M.; Presser, V.
2022. Advanced sustainable systems, 6 (3), Artk.Nr:: 2100383. doi:10.1002/adsu.202100383 -
High-Entropy Sulfides as Electrode Materials for Li-Ion Batteries
Lin, L.; Wang, K.; Sarkar, A.; Njel, C.; Karkera, G.; Wang, Q.; Azmi, R.; Fichtner, M.; Hahn, H.; Schweidler, S.; Breitung, B.
2022. Advanced Energy Materials, 12 (8), Art.-Nr. 2103090. doi:10.1002/aenm.202103090
2021
-
Operando acoustic emission monitoring of degradation processes in lithium-ion batteries with a high-entropy oxide anode
Schweidler, S.; Dreyer, S. L.; Breitung, B.; Brezesinski, T.
2021. Scientific reports, 11 (1), Article no: 23381. doi:10.1038/s41598-021-02685-2 -
High‐Entropy Energy Materials in the Age of Big Data: A Critical Guide to Next‐Generation Synthesis and Applications
Wang, Q.; Velasco, L.; Breitung, B.; Presser, V.
2021. Advanced energy materials, 11 (47), Art. Nr.: 2102355. doi:10.1002/aenm.202102355 -
High-Entropy Metal–Organic Frameworks for Highly Reversible Sodium Storage
Ma, Y.; Ma, Y.; Dreyer, S. L.; Wang, Q.; Wang, K.; Goonetilleke, D.; Omar, A.; Mikhailova, D.; Hahn, H.; Breitung, B.; Brezesinski, T.
2021. Advanced Materials, 33 (34), Art. Nr.: 2101342. doi:10.1002/adma.202101342 -
High-entropy energy materials: Challenges and new opportunities
Ma, Y.; Ma, Y.; Wang, Q.; Schweidler, S.; Botros, M.; Fu, T.; Hahn, H.; Brezesinski, T.; Breitung, B.
2021. Energy and Environmental Science, 14 (5), 2883–2905. doi:10.1039/d1ee00505g -
Mechanochemical synthesis of novel rutile-type high entropy fluorides for electrocatalysis
Sukkurji, P. A.; Cui, Y.; Lee, S.; Wang, K.; Azmi, R.; Sarkar, A.; Indris, S.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Wang, Q.; Botros, M.; Breitung, B.
2021. Journal of Materials Chemistry A, 9 (14), 8998–9009. doi:10.1039/d0ta10209a -
High Entropy and Low Symmetry: Triclinic High-Entropy Molybdates
Stenzel, D.; Issac, I.; Wang, K.; Azmi, R.; Singh, R.; Jeong, J.; Najib, S.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.; Schweidler, S.; Breitung, B.
2021. Inorganic chemistry, 60 (1), 115–123. doi:10.1021/acs.inorgchem.0c02501
2020
-
Adhesive Ion‐Gel as Gate Insulator of Electrolyte‐Gated Transistors
Jeong, J.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2020. ChemElectroChem, 7 (13), 2735–2739. doi:10.1002/celc.202000305 -
Spinel to Rock-Salt Transformation in High Entropy Oxides with Li Incorporation
Wang, J.; Stenzel, D.; Azmi, R.; Najib, S.; Wang, K.; Jeong, J.; Sarkar, A.; Wang, Q.; Sukkurji, P. A.; Bergfeldt, T.; Botros, M.; Maibach, J.; Hahn, H.; Brezesinski, T.; Breitung, B.
2020. Electrochem, 1 (1), 60–74. doi:10.3390/electrochem1010007 -
Lithium containing layered high entropy oxide structures
Wang, J.; Cui, Y.; Wang, Q.; Wang, K.; Huang, X.; Stenzel, D.; Sarkar, A.; Azmi, R.; Bergfeldt, T.; Bhattacharya, S. S.; Kruk, R.; Hahn, H.; Schweidler, S.; Brezesinski, T.; Breitung, B.
2020. Scientific reports, 10, Art.-Nr.: 18430. doi:10.1038/s41598-020-75134-1 -
Mechanochemical synthesis: route to novel rock-salt-structured high-entropy oxides and oxyfluorides
Lin, L.; Wang, K.; Azmi, R.; Wang, J.; Sarkar, A.; Botros, M.; Najib, S.; Cui, Y.; Stenzel, D.; Anitha Sukkurji, P.; Wang, Q.; Hahn, H.; Schweidler, S.; Breitung, B.
2020. Journal of materials science, 55, 16879–16889. doi:10.1007/s10853-020-05183-4 -
ALD-Derived, Low-Density Alumina as Solid Electrolyte in Printed Low-Voltage FETs
Neuper, F.; Marques, G. C.; Singaraju, S. A.; Kruk, R.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2020. IEEE transactions on electron devices, 67 (9), 3828–3833. doi:10.1109/TED.2020.3005624 -
Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates
Singaraju, S. A.; Marques, G. C.; Gruber, P.; Kruk, R.; Hahn, H.; Breitung, B.; Aghassi-Hagmann, J.
2020. Physica status solidi / Rapid research letters, 14 (9), Art.Nr. 2000252. doi:10.1002/pssr.202000252 -
High entropy oxides: The role of entropy, enthalpy and synergy
Sarkar, A.; Breitung, B.; Hahn, H.
2020. Scripta materialia, 187, 43–48. doi:10.1016/j.scriptamat.2020.05.019 -
Tailored Silicon/Carbon Compounds for Printed Li–Ion Anodes
Sukkurji, P. A.; Issac, I.; Singaraju, S. A.; Velasco, L.; Hagmann, J. A.; Bessler, W.; Hahn, H.; Botros, M.; Breitung, B.
2020. Batteries & supercaps, 3 (8), 713–720. doi:10.1002/batt.202000052 -
Gassing Behavior of High‐Entropy Oxide Anode and Oxyfluoride Cathode Probed Using Differential Electrochemical Mass Spectrometry
Breitung, B.; Wang, Q.; Schiele, A.; Tripković, Đ.; Sarkar, A.; Velasco, L.; Wang, D.; Bhattacharya, S. S.; Hahn, H.; Brezesinski, T.
2020. Batteries & supercaps, 3 (4), 361–369. doi:10.1002/batt.202000010
2019
-
Development of Fully Printed Electrolyte-Gated Oxide Transistors Using Graphene Passive Structures
Singaraju, S. A.; Baby, T. T.; Neuper, F.; Kruk, R.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2019. ACS applied electronic materials, 1 (8), 1538–1544. doi:10.1021/acsaelm.9b00313 -
Tailoring Threshold Voltages of Printed Electrolyte-Gated Field-Effect Transistors by Chromium Doping of Indium Oxide Channels
Neuper, F.; Chandresh, A.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2019. ACS omega, 4 (24), 20579–20585. doi:10.1021/acsomega.9b02513 -
Ink‐Jet Printable, Self‐Assembled, and Chemically Crosslinked Ion‐Gel as Electrolyte for Thin Film, Printable Transistors
Jeong, J.; Marques, G. C.; Feng, X.; Boll, D.; Singaraju, S. A.; Aghassi-Hagmann, J.; Hahn, H.; Breitung, B.
2019. Advanced materials interfaces, 6 (21), 1901074. doi:10.1002/admi.201901074 -
Thin Films of Thermally Stable Ordered Mesoporous Rh₂O₃(I) for Visible-Light Photocatalysis and Humidity Sensing
Dubraja, L. A.; Boll, D.; Reitz, C.; Wang, D.; Belić, D.; Mazilkin, A.; Breitung, B.; Hahn, H.; Elm, M. T.; Brezesinski, T.
2019. ACS applied nano materials, 2 (11), 7126–7133. doi:10.1021/acsanm.9b01654 -
On the homogeneity of high entropy oxides: An investigation at the atomic scale
Chellali, M. R.; Sarkar, A.; Nandam, S. H.; Bhattacharya, S. S.; Breitung, B.; Hahn, H.; Velasco, L.
2019. Scripta materialia, 166, 58–63. doi:10.1016/j.scriptamat.2019.02.039 -
Reversible control of magnetism: On the conversion of hydrated FeF3 with Li to Fe and LiF
Singh, R.; Witte, R.; Mu, X.; Brezesinski, T.; Hahn, H.; Kruk, R.; Breitung, B.
2019. Journal of materials chemistry / A, 7 (41), 24005–24011. doi:10.1039/c9ta08928d -
Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries
Wang, Q.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Energy & environmental science, 12 (8), 2433–2442. doi:10.1039/c9ee00368a -
Influence of Humidity on the Performance of Composite Polymer Electrolyte-Gated Field-Effect Transistors and Circuits
Marques, G. C.; Von Seggern, F.; Dehm, S.; Breitung, B.; Hahn, H.; Dasgupta, S.; Tahoori, M. B.; Aghassi-Hagmann, J.
2019. IEEE transactions on electron devices, 66 (5), 2202–2207. doi:10.1109/TED.2019.2903456 -
High-Entropy Oxides: Fundamental Aspects and Electrochemical Properties
Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M. R.; Bhattacharya, S. S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B.
2019. Advanced materials, 1806236. doi:10.1002/adma.201806236 -
High entropy oxides as anode material for Li-ion battery applications: A practical approach
Wang, Q.; Sarkar, A.; Li, Z.; Lu, Y.; Velasco, L.; Bhattacharya, S. S.; Brezesinski, T.; Hahn, H.; Breitung, B.
2019. Electrochemistry communications, 100, 121–125. doi:10.1016/j.elecom.2019.02.001
2018
-
Silicon nanoparticles with a polymer-derived carbon shell for improved lithium-ion batteries: Investigation into volume expansion, gas evolution, and particle fracture
Schiele, A.; Breitung, B.; Mazilkin, A.; Schweidler, S.; Janek, J.; Gumbel, S.; Fleischmann, S.; Burakowska-Meise, E.; Sommer, H.; Brezesinski, T.
2018. ACS omega, 3 (12), 16706–16713. doi:10.1021/acsomega.8b02541 -
Artificial Composite Anode Comprising High-Capacity Silicon and Carbonaceous Nanostructures for Long Cycle Life Lithium-Ion Batteries
Breitung, B.; Schneider, A.; Chakravadhanula, V. S. K.; Suchomski, C.; Janek, J.; Sommer, H.; Brezesinski, T.
2018. Batteries & Supercaps, 1 (1), 27–32. doi:10.1002/batt.201700004 -
Facile synthesis of C–FeF2 nanocomposites from CFx: influence of carbon precursor on reversible lithium storage
Reddy, M. A.; Breitung, B.; Kiran Chakravadhanula, V. S.; Helen, M.; Witte, R.; Rongeat, C.; Kübel, C.; Hahn, H.; Fichtner, M.
2018. RSC Advances, 8 (64), 36802–36811. doi:10.1039/C8RA07378C -
Printed Electronics Based on Inorganic Semiconductors: From Processes and Materials to Devices
Garlapati, S. K.; Divya, M.; Breitung, B.; Kruk, R.; Hahn, H.; Dasgupta, S.
2018. Advanced materials, 30 (40), Art. Nr.: 1707600. doi:10.1002/adma.201707600 -
High entropy oxides for reversible energy storage
Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; Biasi, L. de; Kübel, C.; Brezesinski, T.; Bhattacharya, S. S.; Hahn, H.; Breitung, B.
2018. Nature Communications, 9 (1), Article number: 3400. doi:10.1038/s41467-018-05774-5 -
Formation of nanocrystalline graphene on germanium
Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
2018. Nanoscale, 10 (25), 12156–12162. doi:10.1039/c8nr01261j
2017
-
Embroidered Copper Microwire Current Collector for Improved Cycling Performance of Silicon Anodes in Lithium-Ion Batteries
Breitung, B.; Aguiló-Aguayo, N.; Bechtold, T.; Hahn, H.; Janek, J.; Brezesinski, T.
2017. Scientific reports, 7, 13010. doi:10.1038/s41598-017-13261-y -
[Ag₁₁₅S₃₄(SCH₂C₆H₄
Bu)₄7(dpph)₆]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster
Bestgen, S.; Fuhr, O.; Breitung, B.; Chakravadhanula, V. S. K.; Guthausen, G.; Hennrich, F.; Yu, W.; Kappes, M. M.; Roesky, P. W.; Fenske, D.
2017. Chemical science, 8 (3), 2235–2240. doi:10.1039/c6sc04578b
2016
-
Microwave synthesis of high-quality and uniform 4 nm ZnFe₂O₄ nanocrystals for application in energy storage and nanomagnetics
Suchomski, C.; Breitung, B.; Witte, R.; Knapp, M.; Bauer, S.; Baumbach, T.; Reitz, C.; Brezesinski, T.
2016. Beilstein journal of nanotechnology, 7, 1350–1360. doi:10.3762/bjnano.7.126 -
In situ and operando atomic force microscopy of high-capacity nano-silicon based electrodes for lithium-ion batteries
Breitung, B.; Baumann, P.; Sommer, H.; Janek, J.; Brezesinski, T.
2016. Nanoscale, 8 (29), 14048–14056. doi:10.1039/c6nr03575b -
Hierarchical Carbon with High Nitrogen Doping Level: A Versatile Anode and Cathode Host Material for Long-Life Lithium-Ion and Lithium-Sulfur Batteries
Reitz, C.; Breitung, B.; Schneider, A.; Wang, D.; Lehr, M. von der; Leichtweiss, T.; Janek, J.; Hahn, H.; Brezesinski, T.
2016. ACS applied materials & interfaces, 8 (16), 10274–10282. doi:10.1021/acsami.5b12361 -
Facile Synthesis of Carbon-Metal Fluoride Nanocomposites for Lithium-Ion Batteries
Reddy, M. A.; Breitung, B.; Wall, C.; Trivedi, S.; Chakravadhanula, V. S. K.; Helen, M.; Fichtner, M.
2016. Energy technology, 4 (1), 201–211. doi:10.1002/ente.201500358
2013
-
TEM investigations on FeF₂ based nanocomposite battery materials
Chakravadhanula, V. S. K.; Kübel, C.; Reddy, M. A.; Breitung, B.; Powell, A. K.; Fichtner, M.; Hahn, H.
2013. Microscopy and microanalysis, 19 (Suppl. S2), 1524–1525. doi:10.1017/S1431927613009616 -
Influence of particle size and fluorination ratio of CFₓ precursor compounds on the electrochemical performance of C-FeF₂ nanocomposites for reversible lithium storage
Breitung, B.; Reddy, M. A.; Chakravadhanula, V. S. K.; Engel, M.; Kübel, C.; Powell, A. K.; Hahn, H.; Fichtner, M.
2013. Beilstein journal of nanotechnology, 4, 705–713. doi:10.3762/bjnano.4.80 -
Improving the energy density and power density of CFₓ by mechanical milling: A primary lithium battery electrode
Reddy, M. A.; Breitung, B.; Fichtner, M.
2013. ACS Applied Materials and Interfaces, 5, 11207–11211. doi:10.1021/am403438m -
CFx derived carbon-FeF₂ nanocomposites for reversible lithium storage
Reddy, M. A.; Breitung, B.; Chakravadhanula, V. S. K.; Wall, C.; Engel, M.; Kübel, C.; Powell, A. K.; Hahn, H.; Fichtner, M.
2013. Advanced energy materials, 3, 308–313. doi:10.1002/aenm.201200788 -
Fe basierte Konversionsmaterialien für Li-Ionen Sekundärbatterien. PhD dissertation
Breitung, B.
2013. Dissertation, Karlsruher Institut für Technologie 2013
2011
-
Functionalized silver chalcogenide clusters
Langer, R.; Breitung, B.; Wünsche, L.; Fenske, D.; Fuhr, O.
2011. Zeitschrift für Anorganische und Allgemeine Chemie, 637, 995–1005. doi:10.1002/zaac.201100018