Publications
2024
Advanced 1D heterostructures based on nanotube templates and molecules
Allard, C.; Alvarez, L.; Bantignies, J.-L.; Bendiab, N.; Cambré, S.; Campidelli, S.; Fagan, J. A.; Flahaut, E.; Flavel, B.; Fossard, F.; Gaufrès, E.; Heeg, S.; Lauret, J.-S.; Loiseau, A.; Marceau, J.-B.; Martel, R.; Marty, L.; Pichler, T.; Voisin, C.; Reich, S.; Setaro, A.; Shi, L.; Wenseleers, W.
2024. Chemical Society Reviews, 53 (16), 8457–8512. doi:10.1039/D3CS00467H
Allard, C.; Alvarez, L.; Bantignies, J.-L.; Bendiab, N.; Cambré, S.; Campidelli, S.; Fagan, J. A.; Flahaut, E.; Flavel, B.; Fossard, F.; Gaufrès, E.; Heeg, S.; Lauret, J.-S.; Loiseau, A.; Marceau, J.-B.; Martel, R.; Marty, L.; Pichler, T.; Voisin, C.; Reich, S.; Setaro, A.; Shi, L.; Wenseleers, W.
2024. Chemical Society Reviews, 53 (16), 8457–8512. doi:10.1039/D3CS00467H
Easy Access to Bright Oxygen Defects in Biocompatible Single-Walled Carbon Nanotubes via a Fenton-like Reaction
Settele, S.; Stammer, F.; Sebastian, F. L.; Lindenthal, S.; Wald, S. R.; Li, H.; Flavel, B. S.; Zaumseil, J.
2024. ACS Nano, 18 (31), 20667–20678. doi:10.1021/acsnano.4c06448
Settele, S.; Stammer, F.; Sebastian, F. L.; Lindenthal, S.; Wald, S. R.; Li, H.; Flavel, B. S.; Zaumseil, J.
2024. ACS Nano, 18 (31), 20667–20678. doi:10.1021/acsnano.4c06448
Collective radial breathing modes in homogeneous nanotube bundles
Berrezueta-Palacios, C.; Nakar, D.; Wroblewska, A.; Garrity, O.; Li, H.; Shadmi, N.; Flavel, B. S.; Joselevich, E.; Reich, S.; Gordeev, G.
2024. Carbon, 224, Art.-Nr.: 119010. doi:10.1016/j.carbon.2024.119010
Berrezueta-Palacios, C.; Nakar, D.; Wroblewska, A.; Garrity, O.; Li, H.; Shadmi, N.; Flavel, B. S.; Joselevich, E.; Reich, S.; Gordeev, G.
2024. Carbon, 224, Art.-Nr.: 119010. doi:10.1016/j.carbon.2024.119010
On the mechanism of piezoresistance in nanocrystalline graphite
Kumar, S.; Dehm, S.; Krupke, R.
2024. Beilstein Journal of Nanotechnology, 15, 376–384. doi:10.3762/bjnano.15.34
Kumar, S.; Dehm, S.; Krupke, R.
2024. Beilstein Journal of Nanotechnology, 15, 376–384. doi:10.3762/bjnano.15.34
Correlation Measurements for Carbon Nanotubes with Quantum Defects
Li, M.-K.; Dehm, S.; Kappes, M. M.; Hennrich, F.; Krupke, R.
2024. ACS Nano, 18 (13), 9525–9534. doi:10.1021/acsnano.3c12530
Li, M.-K.; Dehm, S.; Kappes, M. M.; Hennrich, F.; Krupke, R.
2024. ACS Nano, 18 (13), 9525–9534. doi:10.1021/acsnano.3c12530
Magnetointerferometry of multiterminal Josephson junctions
Mélin, R.; Winkelmann, C. B.; Danneau, R.
2024. Physical Review B, 109 (12), Art.-Nr.: 125406. doi:10.1103/PhysRevB.109.125406
Mélin, R.; Winkelmann, C. B.; Danneau, R.
2024. Physical Review B, 109 (12), Art.-Nr.: 125406. doi:10.1103/PhysRevB.109.125406
How to recognize clustering of luminescent defects in single-wall carbon nanotubes
Sebastian, F. L.; Settele, S.; Li, H.; Flavel, B. S.; Zaumseil, J.
2024. Nanoscale Horizons. doi:10.1039/d4nh00383g
Sebastian, F. L.; Settele, S.; Li, H.; Flavel, B. S.; Zaumseil, J.
2024. Nanoscale Horizons. doi:10.1039/d4nh00383g
Dielectric Screening inside Carbon Nanotubes
Gordeev, G.; Wasserroth, S.; Li, H.; Jorio, A.; Flavel, B. S.; Reich, S.
2024. Nano Letters, 24 (26), 8030–8037. doi:10.1021/acs.nanolett.4c01668
Gordeev, G.; Wasserroth, S.; Li, H.; Jorio, A.; Flavel, B. S.; Reich, S.
2024. Nano Letters, 24 (26), 8030–8037. doi:10.1021/acs.nanolett.4c01668
The Development of Carbon/Silicon Heterojunction Solar Cells through Interface Passivation
Chen, B.; Zhang, X.; Gao, Q.; Yang, D.; Chen, J.; Chang, X.; Zhang, C.; Bai, Y.; Cui, M.; Wang, S.; Li, H.; Flavel, B. S.; Chen, J.
2024. Advanced Science, 11 (12), Art.-Nr.: 2306993. doi:10.1002/advs.202306993
Chen, B.; Zhang, X.; Gao, Q.; Yang, D.; Chen, J.; Chang, X.; Zhang, C.; Bai, Y.; Cui, M.; Wang, S.; Li, H.; Flavel, B. S.; Chen, J.
2024. Advanced Science, 11 (12), Art.-Nr.: 2306993. doi:10.1002/advs.202306993
Ratiometric fluorescent sensing of pyrophosphate with sp³-functionalized single-walled carbon nanotubes
Settele, S.; Schrage, C. A.; Jung, S.; Michel, E.; Li, H.; Flavel, B. S.; Hashmi, A. S. K.; Kruss, S.; Zaumseil, J.
2024. Nature Communications, 15 (1), Art-Nr.: 706. doi:10.1038/s41467-024-45052-1
Settele, S.; Schrage, C. A.; Jung, S.; Michel, E.; Li, H.; Flavel, B. S.; Hashmi, A. S. K.; Kruss, S.; Zaumseil, J.
2024. Nature Communications, 15 (1), Art-Nr.: 706. doi:10.1038/s41467-024-45052-1
Enhanced Broadband Photodetection with Geometry and Interface Engineered Nanocrystalline Graphite
Parmar, D.; Dehm, S.; Peyyety, N. A.; Kumar, S.; Krupke, R.
2024. Advanced Sensor Research, 3 (2), Art.-Nr.: 2300134. doi:10.1002/adsr.202300134
Parmar, D.; Dehm, S.; Peyyety, N. A.; Kumar, S.; Krupke, R.
2024. Advanced Sensor Research, 3 (2), Art.-Nr.: 2300134. doi:10.1002/adsr.202300134
2023
Andreev and normal reflections in gapped bilayer graphene–superconductor junctions
Ram, P.; Beckmann, D.; Danneau, R.; Belzig, W.
2023. Physical Review B, 108 (18), Article no: 184510. doi:10.1103/PhysRevB.108.184510
Ram, P.; Beckmann, D.; Danneau, R.; Belzig, W.
2023. Physical Review B, 108 (18), Article no: 184510. doi:10.1103/PhysRevB.108.184510
Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single-Walled Carbon Nanotubes
Gordeev, G.; Lafeta, L.; Flavel, B. S.; Jorio, A.; Malard, L. M.
2023. The Journal of Physical Chemistry C, 127 (41), 20438–20444. doi:10.1021/acs.jpcc.3c05696
Gordeev, G.; Lafeta, L.; Flavel, B. S.; Jorio, A.; Malard, L. M.
2023. The Journal of Physical Chemistry C, 127 (41), 20438–20444. doi:10.1021/acs.jpcc.3c05696
Stochastic Formation of Quantum Defects in Carbon Nanotubes
Ma, C.; Schrage, C. A.; Gretz, J.; Akhtar, A.; Sistemich, L.; Schnitzler, L.; Li, H.; Tschulik, K.; Flavel, B. S.; Kruss, S.
2023. ACS Nano, 17 (16), 15989 – 15998. doi:10.1021/acsnano.3c04314
Ma, C.; Schrage, C. A.; Gretz, J.; Akhtar, A.; Sistemich, L.; Schnitzler, L.; Li, H.; Tschulik, K.; Flavel, B. S.; Kruss, S.
2023. ACS Nano, 17 (16), 15989 – 15998. doi:10.1021/acsnano.3c04314
Proposal for detecting the π -shifted Cooper quartet supercurrent
Mélin, R.; Danneau, R.; Winkelmann, C. B.
2023. Physical Review Research, 5 (3), 033124. doi:10.1103/PhysRevResearch.5.033124
Mélin, R.; Danneau, R.; Winkelmann, C. B.
2023. Physical Review Research, 5 (3), 033124. doi:10.1103/PhysRevResearch.5.033124
Radial Alignment of Carbon Nanotubes via Dead‐End Filtration
Rust, C.; Schill, E.; Garrity, O.; Spari, M.; Li, H.; Bacher, A.; Guttmann, M.; Reich, S.; Flavel, B. S. S.
2023. Small, 19 (19), Art.-Nr.: 2207684. doi:10.1002/smll.202207684
Rust, C.; Schill, E.; Garrity, O.; Spari, M.; Li, H.; Bacher, A.; Guttmann, M.; Reich, S.; Flavel, B. S. S.
2023. Small, 19 (19), Art.-Nr.: 2207684. doi:10.1002/smll.202207684
Organic Passivation of Deep Defects in Cu(In,Ga)Se Film for Geometry-Simplified Compound Solar Cells
Chen, J.; Chang, X.; Guo, J.; Gao, Q.; Zhang, X.; Liu, C.; Yang, X.; Zhou, X.; Chen, B.; Li, F.; Wang, J.; Yan, X.; Song, D.; Li, H.; Flavel, B. S.; Wang, S.; Chen, J.
2023. Research, 6, Art.-Nr. : 0084. doi:10.34133/research.0084
Chen, J.; Chang, X.; Guo, J.; Gao, Q.; Zhang, X.; Liu, C.; Yang, X.; Zhou, X.; Chen, B.; Li, F.; Wang, J.; Yan, X.; Song, D.; Li, H.; Flavel, B. S.; Wang, S.; Chen, J.
2023. Research, 6, Art.-Nr. : 0084. doi:10.34133/research.0084
The Impact of Carbon Nanotube Length and Diameter on their Global Alignment by Dead‐End Filtration
Rust, C.; Shapturenka, P.; Spari, M.; Jin, Q.; Li, H.; Bacher, A.; Guttmann, M.; Zheng, M.; Adel, T.; Walker, A. R. H.; Fagan, J. A.; Flavel, B. S.
2023. Small, 19 (10), 1–13. doi:10.1002/smll.202206774
Rust, C.; Shapturenka, P.; Spari, M.; Jin, Q.; Li, H.; Bacher, A.; Guttmann, M.; Zheng, M.; Adel, T.; Walker, A. R. H.; Fagan, J. A.; Flavel, B. S.
2023. Small, 19 (10), 1–13. doi:10.1002/smll.202206774
Multi‐Carrier Generation in Organic‐Passivated Black Silicon Solar Cells with Industrially Feasible Processes
Zhou, X.; Wan, L.; Li, H.; Yang, X.; Chen, J.; Ge, K.; Yan, J.; Zhang, C.; Gao, Q.; Zhang, X.; Guo, J.; Li, F.; Wang, J.; Song, D.; Wang, S.; Flavel, B. S.; Chen, J.
2023. Small, 19 (10), Art.-Nr.: 2205848. doi:10.1002/smll.202205848
Zhou, X.; Wan, L.; Li, H.; Yang, X.; Chen, J.; Ge, K.; Yan, J.; Zhang, C.; Gao, Q.; Zhang, X.; Guo, J.; Li, F.; Wang, J.; Song, D.; Wang, S.; Flavel, B. S.; Chen, J.
2023. Small, 19 (10), Art.-Nr.: 2205848. doi:10.1002/smll.202205848
Isolation of the (6,5) single-wall carbon nanotube enantiomers by surfactant-assisted aqueous two-phase extraction
Li, H.; Sims, C. M.; Kang, R.; Biedermann, F.; Fagan, J. A.; Flavel, B. S.
2023. Carbon, 204, 475–483. doi:10.1016/j.carbon.2022.12.071
Li, H.; Sims, C. M.; Kang, R.; Biedermann, F.; Fagan, J. A.; Flavel, B. S.
2023. Carbon, 204, 475–483. doi:10.1016/j.carbon.2022.12.071
Ternary PM6:Y6 Solar Cells with Single‐Walled Carbon Nanotubes
Wieland, L.; Li, H.; Zhang, X.; Chen, J.; Flavel, B. S.
2023. Small Science, 3 (2), Art.-Nr.: 2200079. doi:10.1002/smsc.202200079
Wieland, L.; Li, H.; Zhang, X.; Chen, J.; Flavel, B. S.
2023. Small Science, 3 (2), Art.-Nr.: 2200079. doi:10.1002/smsc.202200079
Commercial carbon nanotube as rear contacts for industrial p-type silicon solar cells with an efficiency exceeding 23%
Gao, Q.; Yan, J.; Li, H.; Chen, J.; Yang, X.; Bai, Y.; Zhang, X.; Chen, B.; Guo, J.; Duan, W.; Han, K.; Li, F.; Wang, J.; Song, D.; Wang, S.; Flavel, B. S.; Chen, J.
2023. Carbon, 202 (PArt 1), 432–437. doi:10.1016/j.carbon.2022.11.020
Gao, Q.; Yan, J.; Li, H.; Chen, J.; Yang, X.; Bai, Y.; Zhang, X.; Chen, B.; Guo, J.; Duan, W.; Han, K.; Li, F.; Wang, J.; Song, D.; Wang, S.; Flavel, B. S.; Chen, J.
2023. Carbon, 202 (PArt 1), 432–437. doi:10.1016/j.carbon.2022.11.020
Sensitive Detection of a Gaseous Analyte with Low‐Power Metal–Organic Framework Functionalized Carbon Nanotube Transistors
Kumar, S.; Dehm, S.; Wieland, L.; Chandresh, A.; Heinke, L.; Flavel, B. S.; Krupke, R.
2023. Advanced Electronic Materials, 10 (1), Art.-Nr.: 2300533. doi:10.1002/aelm.202300533
Kumar, S.; Dehm, S.; Wieland, L.; Chandresh, A.; Heinke, L.; Flavel, B. S.; Krupke, R.
2023. Advanced Electronic Materials, 10 (1), Art.-Nr.: 2300533. doi:10.1002/aelm.202300533
Graphitizability of Polymer Thin Films: An In Situ TEM Study of Thickness Effects on Nanocrystalline Graphene/Glassy Carbon Formation
Shyam Kumar, C. N.; Possel, C.; Dehm, S.; Chakravadhanula, V. S. K.; Wang, D.; Wenzel, W.; Krupke, R.; Kübel, C.
2023. Macromolecular Materials and Engineering, 309 (1), Art.-Nr.: 2300230. doi:10.1002/mame.202300230
Shyam Kumar, C. N.; Possel, C.; Dehm, S.; Chakravadhanula, V. S. K.; Wang, D.; Wenzel, W.; Krupke, R.; Kübel, C.
2023. Macromolecular Materials and Engineering, 309 (1), Art.-Nr.: 2300230. doi:10.1002/mame.202300230
An electroluminescent and tunable cavity-enhanced carbon-nanotube-emitter in the telecom band
Ovvyan, A. P.; Li, M.-K.; Gehring, H.; Beutel, F.; Kumar, S.; Hennrich, F.; Wei, L.; Chen, Y.; Pyatkov, F.; Krupke, R.; Pernice, W. H. P.
2023. Nature Communications, 14 (1), Art.Nr.: 3933. doi:10.1038/s41467-023-39622-y
Ovvyan, A. P.; Li, M.-K.; Gehring, H.; Beutel, F.; Kumar, S.; Hennrich, F.; Wei, L.; Chen, Y.; Pyatkov, F.; Krupke, R.; Pernice, W. H. P.
2023. Nature Communications, 14 (1), Art.Nr.: 3933. doi:10.1038/s41467-023-39622-y
Interdigitated Back‐Contacted Carbon Nanotube–Silicon Solar Cells
Bai, Y.; Gao, Q.; Chen, B.; Li, W.; Zhang, X.; Yang, D.; Yang, X.; Yan, J.; Chen, J.; Wang, J.; Song, D.; Wang, S.; Li, H.; Flavel, B. S.; Chen, J.
2023. Small Structures, 4 (8), Art.-Nr.: 2200375. doi:10.1002/sstr.202200375
Bai, Y.; Gao, Q.; Chen, B.; Li, W.; Zhang, X.; Yang, D.; Yang, X.; Yan, J.; Chen, J.; Wang, J.; Song, D.; Wang, S.; Li, H.; Flavel, B. S.; Chen, J.
2023. Small Structures, 4 (8), Art.-Nr.: 2200375. doi:10.1002/sstr.202200375
Near‐Intrinsic Photo‐ and Electroluminescence from Single‐Walled Carbon Nanotube Thin Films on BCB‐Passivated Surfaces
Zorn, N. F.; Settele, S.; Settele, S.; Zhao, S.; Lindenthal, S.; El Yumin, A. A.; Wedl, T.; Li, H.; Flavel, B. S.; Högele, A.; Zaumseil, J.
2023. Advanced Optical Materials, 11 (14), Art.-Nr.: 2300236. doi:10.1002/adom.202300236
Zorn, N. F.; Settele, S.; Settele, S.; Zhao, S.; Lindenthal, S.; El Yumin, A. A.; Wedl, T.; Li, H.; Flavel, B. S.; Högele, A.; Zaumseil, J.
2023. Advanced Optical Materials, 11 (14), Art.-Nr.: 2300236. doi:10.1002/adom.202300236
2022
Energy distribution controlled ballistic Josephson junction
Pandey, P.; Beckmann, D.; Danneau, R.
2022. Physical Review B, 106 (21), Art.-Nr.: 214503. doi:10.1103/PhysRevB.106.214503
Pandey, P.; Beckmann, D.; Danneau, R.
2022. Physical Review B, 106 (21), Art.-Nr.: 214503. doi:10.1103/PhysRevB.106.214503
Efficient Inner-to-Outer Wall Energy Transfer in Highly Pure Double-Wall Carbon Nanotubes Revealed by Detailed Spectroscopy
Erkens, M.; Levshov, D.; Wenseleers, W.; Li, H.; Flavel, B. S.; Fagan, J. A.; Popov, V. N.; Avramenko, M.; Forel, S.; Flahaut, E.; Cambré, S.
2022. ACS Nano, 16 (10), 16038–16053. doi:10.1021/acsnano.2c03883
Erkens, M.; Levshov, D.; Wenseleers, W.; Li, H.; Flavel, B. S.; Fagan, J. A.; Popov, V. N.; Avramenko, M.; Forel, S.; Flahaut, E.; Cambré, S.
2022. ACS Nano, 16 (10), 16038–16053. doi:10.1021/acsnano.2c03883
High‐Efficiency Graphene‐Oxide/Silicon Solar Cells with an Organic‐Passivated Interface
Gao, Q.; Yan, J.; Wan, L.; Zhang, C.; Wen, Z.; Zhou, X.; Li, H.; Li, F.; Chen, J.; Guo, J.; Song, D.; Flavel, B. S.; Chen, J.
2022. Advanced Materials Interfaces, 9 (24), Art.-Nr.: 2201221. doi:10.1002/admi.202201221
Gao, Q.; Yan, J.; Wan, L.; Zhang, C.; Wen, Z.; Zhou, X.; Li, H.; Li, F.; Chen, J.; Guo, J.; Song, D.; Flavel, B. S.; Chen, J.
2022. Advanced Materials Interfaces, 9 (24), Art.-Nr.: 2201221. doi:10.1002/admi.202201221
Diameter-dependent single- and double-file stacking of squaraine dye molecules inside chirality-sorted single-wall carbon nanotubes
Forel, S.; Li, H.; van Bezouw, S.; Campo, J.; Wieland, L.; Wenseleers, W.; Flavel, B. S.; Cambré, S.
2022. Nanoscale, 14 (23), 8385–8397. doi:10.1039/d2nr01630c
Forel, S.; Li, H.; van Bezouw, S.; Campo, J.; Wieland, L.; Wenseleers, W.; Flavel, B. S.; Cambré, S.
2022. Nanoscale, 14 (23), 8385–8397. doi:10.1039/d2nr01630c
Light Control over Chirality Selective Functionalization of Substrate Supported Carbon Nanotubes
Gordeev, G.; Rosenkranz, T.; Hennrich, F.; Reich, S.; Krupke, R.
2022. The Journal of Physical Chemistry C, 126 (23), 9803–9812. doi:10.1021/acs.jpcc.2c01628
Gordeev, G.; Rosenkranz, T.; Hennrich, F.; Reich, S.; Krupke, R.
2022. The Journal of Physical Chemistry C, 126 (23), 9803–9812. doi:10.1021/acs.jpcc.2c01628
Spin and valley degrees of freedom in a bilayer graphene quantum point contact: Zeeman splitting and interaction effects
Gall, V.; Kraft, R.; Gornyi, I. V.; Danneau, R.
2022. Physical Review Research, 4 (2), Art.-Nr.: 023142. doi:10.1103/PhysRevResearch.4.023142
Gall, V.; Kraft, R.; Gornyi, I. V.; Danneau, R.
2022. Physical Review Research, 4 (2), Art.-Nr.: 023142. doi:10.1103/PhysRevResearch.4.023142
Absolute Quantification of sp Defects in Semiconducting Single-Wall Carbon Nanotubes by Raman Spectroscopy
Sebastian, F. L.; Zorn, N. F.; Settele, S.; Lindenthal, S.; Berger, F. J.; Bendel, C.; Li, H.; Flavel, B. S.; Zaumseil, J.
2022. The Journal of Physical Chemistry Letters, 13 (16), 3542–3548. doi:10.1021/acs.jpclett.2c00758
Sebastian, F. L.; Zorn, N. F.; Settele, S.; Lindenthal, S.; Berger, F. J.; Bendel, C.; Li, H.; Flavel, B. S.; Zaumseil, J.
2022. The Journal of Physical Chemistry Letters, 13 (16), 3542–3548. doi:10.1021/acs.jpclett.2c00758
Phase-dependent microwave response of a graphene Josephson junction
Haller, R.; Fülöp, G.; Indolese, D.; Ridderbos, J.; Kraft, R.; Cheung, L. Y.; Ungerer, J. H.; Watanabe, K.; Taniguchi, T.; Beckmann, D.; Danneau, R.; Virtanen, P.; Schönenberger, C.
2022. Physical Review Research, 4, Art.-Nr.: 013198. doi:10.1103/PhysRevResearch.4.013198
Haller, R.; Fülöp, G.; Indolese, D.; Ridderbos, J.; Kraft, R.; Cheung, L. Y.; Ungerer, J. H.; Watanabe, K.; Taniguchi, T.; Beckmann, D.; Danneau, R.; Virtanen, P.; Schönenberger, C.
2022. Physical Review Research, 4, Art.-Nr.: 013198. doi:10.1103/PhysRevResearch.4.013198
Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects
Li, M.-K.; Riaz, A.; Wederhake, M.; Fink, K.; Saha, A.; Dehm, S.; He, X.; Schöppler, F.; Kappes, M. M.; Htoon, H.; Popov, V. N.; Doorn, S. K.; Hertel, T.; Hennrich, F.; Krupke, R.
2022. ACS Nano, 16 (8), 11742–11754. doi:10.1021/acsnano.2c03083
Li, M.-K.; Riaz, A.; Wederhake, M.; Fink, K.; Saha, A.; Dehm, S.; He, X.; Schöppler, F.; Kappes, M. M.; Htoon, H.; Popov, V. N.; Doorn, S. K.; Hertel, T.; Hennrich, F.; Krupke, R.
2022. ACS Nano, 16 (8), 11742–11754. doi:10.1021/acsnano.2c03083
Physics and applications of nanotubes
Maruyama, S.; Arnold, M. S.; Krupke, R.; Peng, L.-M.
2022. Journal of Applied Physics, 131 (8), Art.-Nr.: 080401. doi:10.1063/5.0087075
Maruyama, S.; Arnold, M. S.; Krupke, R.; Peng, L.-M.
2022. Journal of Applied Physics, 131 (8), Art.-Nr.: 080401. doi:10.1063/5.0087075
Tailoring Spectrally Flat Infrared Photodetection with Thickness-Controlled Nanocrystalline Graphite
Peyyety, N. A.; Kumar, S.; Li, M.-K.; Dehm, S.; Krupke, R.
2022. ACS Applied Materials and Interfaces, 14 (7), 9525–9534. doi:10.1021/acsami.1c24306
Peyyety, N. A.; Kumar, S.; Li, M.-K.; Dehm, S.; Krupke, R.
2022. ACS Applied Materials and Interfaces, 14 (7), 9525–9534. doi:10.1021/acsami.1c24306
Detection and Imaging of the Plant Pathogen Response by Near‐Infrared Fluorescent Polyphenol Sensors
Nißler, R.; Müller, A. T.; Dohrman, F.; Kurth, L.; Li, H.; Cosio, E. G.; Flavel, B. S.; Giraldo, J. P.; Mithöfer, A.; Kruss, S.
2022. Angewandte Chemie / International edition, 61 (2). doi:10.1002/anie.202108373
Nißler, R.; Müller, A. T.; Dohrman, F.; Kurth, L.; Li, H.; Cosio, E. G.; Flavel, B. S.; Giraldo, J. P.; Mithöfer, A.; Kruss, S.
2022. Angewandte Chemie / International edition, 61 (2). doi:10.1002/anie.202108373
2021
Contact spacing controls the on-current for all-carbon field effect transistors
Özdemir, A. D.; Barua, P.; Pyatkov, F.; Hennrich, F.; Chen, Y.; Wenzel, W.; Krupke, R.; Fediai, A.
2021. Communications Physics, 4 (1), Art.-Nr.: 246. doi:10.1038/s42005-021-00747-5
Özdemir, A. D.; Barua, P.; Pyatkov, F.; Hennrich, F.; Chen, Y.; Wenzel, W.; Krupke, R.; Fediai, A.
2021. Communications Physics, 4 (1), Art.-Nr.: 246. doi:10.1038/s42005-021-00747-5
Sensing Molecules with Metal–Organic Framework Functionalized Graphene Transistors
Kumar, S.; Pramudya, Y.; Müller, K.; Chandresh, A.; Dehm, S.; Heidrich, S.; Fediai, A.; Parmar, D.; Perera, D.; Rommel, M.; Heinke, L.; Wenzel, W.; Wöll, C.; Krupke, R.
2021. Advanced Materials, 33 (43), Art.Nr. 2103316. doi:10.1002/adma.202103316
Kumar, S.; Pramudya, Y.; Müller, K.; Chandresh, A.; Dehm, S.; Heidrich, S.; Fediai, A.; Parmar, D.; Perera, D.; Rommel, M.; Heinke, L.; Wenzel, W.; Wöll, C.; Krupke, R.
2021. Advanced Materials, 33 (43), Art.Nr. 2103316. doi:10.1002/adma.202103316
Stable Organic Passivated Carbon Nanotube–Silicon Solar Cells with an Efficiency of 22%
Yan, J.; Zhang, C.; Li, H.; Yang, X.; Wan, L.; Li, F.; Qiu, K.; Guo, J.; Duan, W.; Lambertz, A.; Lu, W.; Song, D.; Ding, K.; Flavel, B. S.; Chen, J.
2021. Advanced science, 8 (20), Art.Nr.: 2102027. doi:10.1002/advs.202102027
Yan, J.; Zhang, C.; Li, H.; Yang, X.; Wan, L.; Li, F.; Qiu, K.; Guo, J.; Duan, W.; Lambertz, A.; Lu, W.; Song, D.; Ding, K.; Flavel, B. S.; Chen, J.
2021. Advanced science, 8 (20), Art.Nr.: 2102027. doi:10.1002/advs.202102027
The potential of SWCNTs to extend the IR-absorption of silicon solar cells
Wieland, L.; Rust, C.; Li, H.; Jakoby, M.; Howard, I.; Li, F.; Shi, J.; Chen, J.; Flavel, B. S.
2021. Carbon, 184, 828–835. doi:10.1016/j.carbon.2021.08.080
Wieland, L.; Rust, C.; Li, H.; Jakoby, M.; Howard, I.; Li, F.; Shi, J.; Chen, J.; Flavel, B. S.
2021. Carbon, 184, 828–835. doi:10.1016/j.carbon.2021.08.080
Ballistic Graphene Cooper Pair Splitter
Pandey, P.; Danneau, R.; Beckmann, D.
2021. Physical review letters, 126 (14), Art.-Nr.: 147701. doi:10.1103/PhysRevLett.126.147701
Pandey, P.; Danneau, R.; Beckmann, D.
2021. Physical review letters, 126 (14), Art.-Nr.: 147701. doi:10.1103/PhysRevLett.126.147701
Carbon Nanotubes for Photovoltaics: From Lab to Industry
Wieland, L.; Li, H.; Rust, C.; Chen, J.; Flavel, B. S.
2021. Advanced energy materials, 11 (3), Art.-Nr.: 2002880. doi:10.1002/aenm.202002880
Wieland, L.; Li, H.; Rust, C.; Chen, J.; Flavel, B. S.
2021. Advanced energy materials, 11 (3), Art.-Nr.: 2002880. doi:10.1002/aenm.202002880
Global Alignment of Carbon Nanotubes via High Precision Microfluidic Dead-End Filtration
Rust, C.; Li, H.; Gordeev, G.; Spari, M.; Guttmann, M.; Jin, Q.; Reich, S.; Flavel, B. S.
2021. Advanced Functional Materials, 32 (10), Art.-Nr.: 2107411. doi:10.1002/adfm.202107411
Rust, C.; Li, H.; Gordeev, G.; Spari, M.; Guttmann, M.; Jin, Q.; Reich, S.; Flavel, B. S.
2021. Advanced Functional Materials, 32 (10), Art.-Nr.: 2107411. doi:10.1002/adfm.202107411
Critical current fluctuations in graphene Josephson junctions
Haque, M. T.; Will, M.; Tomi, M.; Pandey, P.; Kumar, M.; Schmidt, F.; Watanabe, K.; Taniguchi, T.; Danneau, R.; Steele, G.; Hakonen, P.
2021. Scientific Reports, 11 (1), Art.Nr. 19900. doi:10.1038/s41598-021-99398-3
Haque, M. T.; Will, M.; Tomi, M.; Pandey, P.; Kumar, M.; Schmidt, F.; Watanabe, K.; Taniguchi, T.; Danneau, R.; Steele, G.; Hakonen, P.
2021. Scientific Reports, 11 (1), Art.Nr. 19900. doi:10.1038/s41598-021-99398-3
Moiré-Induced Vibrational Coupling in Double-Walled Carbon Nanotubes
Gordeev, G.; Wasserroth, S.; Li, H.; Flavel, B.; Reich, S.
2021. Nano Letters, 21 (16), 6732–6739. doi:10.1021/acs.nanolett.1c00295
Gordeev, G.; Wasserroth, S.; Li, H.; Flavel, B.; Reich, S.
2021. Nano Letters, 21 (16), 6732–6739. doi:10.1021/acs.nanolett.1c00295
Solution processable in situ passivated silicon nanowires
Yan, J.; Ge, K.; Li, H.; Yang, X.; Chen, J.; Wan, L.; Guo, J.; Li, F.; Xu, Y.; Song, D.; Flavel, B. S.; Chen, J.
2021. Nanoscale, 13 (26), 11439–11445. doi:10.1039/d1nr02131a
Yan, J.; Ge, K.; Li, H.; Yang, X.; Chen, J.; Wan, L.; Guo, J.; Li, F.; Xu, Y.; Song, D.; Flavel, B. S.; Chen, J.
2021. Nanoscale, 13 (26), 11439–11445. doi:10.1039/d1nr02131a
Charge Transfer from Photoexcited Semiconducting Single-Walled Carbon Nanotubes to Wide-Bandgap Wrapping Polymer
Kuang, Z.; Berger, F. J.; Lustres, J. L. P.; Wollscheid, N.; Li, H.; Lüttgens, J.; Leinen, M. B.; Flavel, B. S.; Zaumseil, J.; Buckup, T.
2021. Journal of Physical Chemistry C, 125 (15), 8125–8136. doi:10.1021/acs.jpcc.0c10171
Kuang, Z.; Berger, F. J.; Lustres, J. L. P.; Wollscheid, N.; Li, H.; Lüttgens, J.; Leinen, M. B.; Flavel, B. S.; Zaumseil, J.; Buckup, T.
2021. Journal of Physical Chemistry C, 125 (15), 8125–8136. doi:10.1021/acs.jpcc.0c10171
Endohedral Filling Effects in Sorted and Polymer-Wrapped Single-Wall Carbon Nanotubes
Li, H.; Gordeev, G.; Toroz, D.; Di Tommaso, D.; Reich, S.; Flavel, B. S.
2021. Journal of Physical Chemistry C, 125 (13), 7476–7487. doi:10.1021/acs.jpcc.1c01390
Li, H.; Gordeev, G.; Toroz, D.; Di Tommaso, D.; Reich, S.; Flavel, B. S.
2021. Journal of Physical Chemistry C, 125 (13), 7476–7487. doi:10.1021/acs.jpcc.1c01390
Sensing with Chirality-Pure Near-Infrared Fluorescent Carbon Nanotubes
Nißler, R.; Kurth, L.; Li, H.; Spreinat, A.; Kuhlemann, I.; Flavel, B. S.; Kruss, S.
2021. Analytical Chemistry, 93 (16), 6446–6455. doi:10.1021/acs.analchem.1c00168
Nißler, R.; Kurth, L.; Li, H.; Spreinat, A.; Kuhlemann, I.; Flavel, B. S.; Kruss, S.
2021. Analytical Chemistry, 93 (16), 6446–6455. doi:10.1021/acs.analchem.1c00168
Erratum to: Principles of carbon nanotube dielectrophoresis
Li, W.; Hennrich, F.; Flavel, B. S.; Dehm, S.; Kappes, M.; Krupke, R.
2021. Nano research, 14, Art.Nr. 2470. doi:10.1007/s12274-021-3378-z
Li, W.; Hennrich, F.; Flavel, B. S.; Dehm, S.; Kappes, M.; Krupke, R.
2021. Nano research, 14, Art.Nr. 2470. doi:10.1007/s12274-021-3378-z
Ionic liquid gating of single-walled carbon nanotube devices with ultra-short channel length down to 10 nm
Janissek, A.; Lenz, J.; Giudice, F. D.; Gaulke, M.; Pyatkov, F.; Dehm, S.; Hennrich, F.; Wei, L.; Chen, Y.; Fediai, A.; Kappes, M.; Wenzel, W.; Krupke, R.; Weitz, R. T.
2021. Applied Physics Letters, 118 (6), Art.-Nr.: 063101. doi:10.1063/5.0034792
Janissek, A.; Lenz, J.; Giudice, F. D.; Gaulke, M.; Pyatkov, F.; Dehm, S.; Hennrich, F.; Wei, L.; Chen, Y.; Fediai, A.; Kappes, M.; Wenzel, W.; Krupke, R.; Weitz, R. T.
2021. Applied Physics Letters, 118 (6), Art.-Nr.: 063101. doi:10.1063/5.0034792
Principles of carbon nanotube dielectrophoresis
Li, W.; Hennrich, F.; Flavel, B. S.; Dehm, S.; Kappes, M.; Krupke, R.
2021. Nano research, 14 (7), 2188–2206. doi:10.1007/s12274-020-3183-0
Li, W.; Hennrich, F.; Flavel, B. S.; Dehm, S.; Kappes, M.; Krupke, R.
2021. Nano research, 14 (7), 2188–2206. doi:10.1007/s12274-020-3183-0
2020
Anomalous Cyclotron Motion in Graphene Superlattice Cavities
Kraft, R.; Liu, M.-H.; Selvasundaram, P. B.; Chen, S.-C.; Krupke, R.; Richter, K.; Danneau, R.
2020. Physical review letters, 125 (21), Article: 217701. doi:10.1103/PhysRevLett.125.217701
Kraft, R.; Liu, M.-H.; Selvasundaram, P. B.; Chen, S.-C.; Krupke, R.; Richter, K.; Danneau, R.
2020. Physical review letters, 125 (21), Article: 217701. doi:10.1103/PhysRevLett.125.217701
A Polymer/Carbon‐Nanotube Ink as a Boron‐Dopant/Inorganic‐Passivation Free Carrier Selective Contact for Silicon Solar Cells with over 21% Efficiency
Chen, J.; Wan, L.; Li, H.; Yan, J.; Ma, J.; Sun, B.; Li, F.; Flavel, B. S.
2020. Advanced functional materials, 30 (38), Art. Nr.: 2004476. doi:10.1002/adfm.202004476
Chen, J.; Wan, L.; Li, H.; Yan, J.; Ma, J.; Sun, B.; Li, F.; Flavel, B. S.
2020. Advanced functional materials, 30 (38), Art. Nr.: 2004476. doi:10.1002/adfm.202004476
Vanishing Hysteresis in Carbon Nanotube Transistors Embedded in Boron Nitride/Polytetrafluoroethylene Heterolayers
Kumar, S.; Dagli, D.; Dehm, S.; Das, C.; Wei, L.; Chen, Y.; Hennrich, F.; Krupke, R.
2020. Physica status solidi / Rapid research letters, 14 (8), Art.Nr. 2000193. doi:10.1002/pssr.202000193
Kumar, S.; Dagli, D.; Dehm, S.; Das, C.; Wei, L.; Chen, Y.; Hennrich, F.; Krupke, R.
2020. Physica status solidi / Rapid research letters, 14 (8), Art.Nr. 2000193. doi:10.1002/pssr.202000193
Front and Back‐Junction Carbon Nanotube‐Silicon Solar Cells with an Industrial Architecture
Chen, J.; Tune, D. D.; Ge, K.; Li, H.; Flavel, B. S.
2020. Advanced functional materials, 30 (17), Art. Nr.: 2000484. doi:10.1002/adfm.202000484
Chen, J.; Tune, D. D.; Ge, K.; Li, H.; Flavel, B. S.
2020. Advanced functional materials, 30 (17), Art. Nr.: 2000484. doi:10.1002/adfm.202000484
Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices
Gaulke, M.; Janissek, A.; Peyyety, N. A.; Alamgir, I.; Riaz, A.; Dehm, S.; Li, H.; Lemmer, U.; Flavel, B. S.; Kappes, M. M.; Hennrich, F.; Wei, L.; Chen, Y.; Pyatkov, F.; Krupke, R.
2020. ACS nano, 14 (3), 2709–2717. doi:10.1021/acsnano.9b07207
Gaulke, M.; Janissek, A.; Peyyety, N. A.; Alamgir, I.; Riaz, A.; Dehm, S.; Li, H.; Lemmer, U.; Flavel, B. S.; Kappes, M. M.; Hennrich, F.; Wei, L.; Chen, Y.; Pyatkov, F.; Krupke, R.
2020. ACS nano, 14 (3), 2709–2717. doi:10.1021/acsnano.9b07207
Berry phase in superconducting multiterminal quantum dots
Douçot, B.; Danneau, R.; Yang, K.; Caputo, J.-G.; Mélin, R.
2020. Physical review / B, 101 (3), Art.-Nr. 035411. doi:10.1103/PhysRevB.101.035411
Douçot, B.; Danneau, R.; Yang, K.; Caputo, J.-G.; Mélin, R.
2020. Physical review / B, 101 (3), Art.-Nr. 035411. doi:10.1103/PhysRevB.101.035411
Ferroelectric-like organic–inorganic interfaces
Yang, L.; Guo, J.; Li, J.; Yan, J.; Ge, K.; Jiang, J.; Li, H.; Flavel, B. S.; Liu, B.; Chen, J.
2020. Journal of materials chemistry / C, 8 (44), 15677–15684. doi:10.1039/d0tc03384g
Yang, L.; Guo, J.; Li, J.; Yan, J.; Ge, K.; Jiang, J.; Li, H.; Flavel, B. S.; Liu, B.; Chen, J.
2020. Journal of materials chemistry / C, 8 (44), 15677–15684. doi:10.1039/d0tc03384g
Raman Fingerprints of Graphene Produced by Anodic Electrochemical Exfoliation
Nagyte, V.; Kelly, D. J.; Felten, A.; Picardi, G.; Shin, Y.; Alieva, A.; Worsley, R. E.; Parvez, K.; Dehm, S.; Krupke, R.; Haigh, S. J.; Oikonomou, A.; Pollard, A. J.; Casiraghi, C.
2020. Nano letters, 20 (5), 3411–3419. doi:10.1021/acs.nanolett.0c00332
Nagyte, V.; Kelly, D. J.; Felten, A.; Picardi, G.; Shin, Y.; Alieva, A.; Worsley, R. E.; Parvez, K.; Dehm, S.; Krupke, R.; Haigh, S. J.; Oikonomou, A.; Pollard, A. J.; Casiraghi, C.
2020. Nano letters, 20 (5), 3411–3419. doi:10.1021/acs.nanolett.0c00332
Electrostatic superlattices on scaled graphene lattices
Chen, S.-C.; Kraft, R.; Danneau, R.; Richter, K.; Liu, M.-H.
2020. Communications Physics, 3 (1), Article: 71. doi:10.1038/s42005-020-0335-1
Chen, S.-C.; Kraft, R.; Danneau, R.; Richter, K.; Liu, M.-H.
2020. Communications Physics, 3 (1), Article: 71. doi:10.1038/s42005-020-0335-1
Separation of Specific Single-Enantiomer Single-Wall Carbon Nanotubes in the Large-Diameter Regime
Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N. A.; Selvasundaram, P. B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S.; Zheng, M.; Fagan, J. A.; Flavel, B. S.
2020. ACS nano, 14 (1), 948–963. doi:10.1021/acsnano.9b08244
Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N. A.; Selvasundaram, P. B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S.; Zheng, M.; Fagan, J. A.; Flavel, B. S.
2020. ACS nano, 14 (1), 948–963. doi:10.1021/acsnano.9b08244
Breakthrough Carbon Nanotube–Silicon Heterojunction Solar Cells
Tune, D. D.; Mallik, N.; Fornasier, H.; Flavel, B. S.
2020. Advanced energy materials, 10 (1), Article No.1903261. doi:10.1002/aenm.201903261
Tune, D. D.; Mallik, N.; Fornasier, H.; Flavel, B. S.
2020. Advanced energy materials, 10 (1), Article No.1903261. doi:10.1002/aenm.201903261
2019
Graphene Field-Effect Transistors Employing Different Thin Oxide Films: A Comparative Study
Giambra, M. A.; Benfante, A.; Pernice, R.; Miseikis, V.; Fabbri, F.; Reitz, C.; Pernice, W. H. P.; Krupke, R.; Calandra, E.; Stivala, S.; Busacca, A. C.; Danneau, R.
2019. ACS omega, 4 (1), 2256–2260. doi:10.1021/acsomega.8b02836
Giambra, M. A.; Benfante, A.; Pernice, R.; Miseikis, V.; Fabbri, F.; Reitz, C.; Pernice, W. H. P.; Krupke, R.; Calandra, E.; Stivala, S.; Busacca, A. C.; Danneau, R.
2019. ACS omega, 4 (1), 2256–2260. doi:10.1021/acsomega.8b02836
Asymmetry of resonance Raman profiles in semiconducting single-walled carbon nanotubes at the first excitonic transition
Gordeev, G.; Flavel, B.; Krupke, R.; Kusch, P.; Reich, S.
2019. Physical review / B, 99 (4), Art. Nr.: 045404. doi:10.1103/PhysRevB.99.045404
Gordeev, G.; Flavel, B.; Krupke, R.; Kusch, P.; Reich, S.
2019. Physical review / B, 99 (4), Art. Nr.: 045404. doi:10.1103/PhysRevB.99.045404
Andreev reflection in ballistic normal metal/graphene/superconductor junctions
Pandey, P.; Kraft, R.; Krupke, R.; Beckmann, D.; Danneau, R.
2019. Physical review / B, 100 (16), Article No.165416. doi:10.1103/PhysRevB.100.165416
Pandey, P.; Kraft, R.; Krupke, R.; Beckmann, D.; Danneau, R.
2019. Physical review / B, 100 (16), Article No.165416. doi:10.1103/PhysRevB.100.165416
Investigation on Metal-Oxide Graphene Field-Effect Transistors with clamped geometries
Giambra, M. A.; Benz, C.; Wu, F.; Thurmer, M.; Balachandran, G.; Benfante, A.; Pernice, R.; Pandey, H.; Boopathi, M.; Jang, M.; Ahn, J.; Stivala, S.; Calandra, E.; Arnone, C.; Cusumano, P.; Busacca, A.; Pernice, W. H. P.; Danneau, R.
2019. IEEE journal of the Electron Devices Society, 7, 964–968. doi:10.1109/JEDS.2019.2939574
Giambra, M. A.; Benz, C.; Wu, F.; Thurmer, M.; Balachandran, G.; Benfante, A.; Pernice, R.; Pandey, H.; Boopathi, M.; Jang, M.; Ahn, J.; Stivala, S.; Calandra, E.; Arnone, C.; Cusumano, P.; Busacca, A.; Pernice, W. H. P.; Danneau, R.
2019. IEEE journal of the Electron Devices Society, 7, 964–968. doi:10.1109/JEDS.2019.2939574
Engineering the Floquet spectrum of superconducting multiterminal quantum dots
Mélin, R.; Danneau, R.; Yang, K.; Caputo, J.-G.; Douçot, B.
2019. Physical review / B, 100 (3), Art. Nr.: 035450. doi:10.1103/PhysRevB.100.035450
Mélin, R.; Danneau, R.; Yang, K.; Caputo, J.-G.; Douçot, B.
2019. Physical review / B, 100 (3), Art. Nr.: 035450. doi:10.1103/PhysRevB.100.035450
Nanocrystalline graphene at high temperatures: Insight into nanoscale processes
Shyam Kumar, C. N.; Konrad, M.; Chakravadhanula, V. S. K.; Dehm, S.; Wang, D.; Wenzel, W.; Krupke, R.; Kübel, C.
2019. Nanoscale advances, 1 (7), 2485–2494. doi:10.1039/c9na00055k
Shyam Kumar, C. N.; Konrad, M.; Chakravadhanula, V. S. K.; Dehm, S.; Wang, D.; Wenzel, W.; Krupke, R.; Kübel, C.
2019. Nanoscale advances, 1 (7), 2485–2494. doi:10.1039/c9na00055k
Stability of Chemically Doped Nanotube-Silicon Heterojunction Solar Cells: Role of Oxides at the Carbon-Silicon Interface
Tune, D. D.; Shirae, H.; Lami, V.; Headrick, R. J.; Pasquali, M.; Vaynzof, Y.; Noda, S.; Hobbie, E. K.; Flavel, B. S.
2019. ACS applied energy materials, 2 (8), 5925–5932. doi:10.1021/acsaem.9b01050
Tune, D. D.; Shirae, H.; Lami, V.; Headrick, R. J.; Pasquali, M.; Vaynzof, Y.; Noda, S.; Hobbie, E. K.; Flavel, B. S.
2019. ACS applied energy materials, 2 (8), 5925–5932. doi:10.1021/acsaem.9b01050
Measuring in Situ Length Distributions of Polymer-Wrapped Monochiral Single-Walled Carbon Nanotubes Dispersed in Toluene with Analytical Ultracentrifugation
Selvasundaram, P. B.; Kraft, R.; Li, W.; Fischer, R.; Kappes, M. M.; Hennrich, F.; Krupke, R.
2019. Langmuir, 35 (10), 3790–3796. doi:10.1021/acs.langmuir.9b00005
Selvasundaram, P. B.; Kraft, R.; Li, W.; Fischer, R.; Kappes, M. M.; Hennrich, F.; Krupke, R.
2019. Langmuir, 35 (10), 3790–3796. doi:10.1021/acs.langmuir.9b00005
Separation of Small-Diameter Single-Walled Carbon Nanotubes in One to Three Steps with Aqueous Two-Phase Extraction
Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S.
2019. ACS nano, 13 (2), 2567–2578. doi:10.1021/acsnano.8b09579
Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S.
2019. ACS nano, 13 (2), 2567–2578. doi:10.1021/acsnano.8b09579
Near-Infrared Photoresponse of Waveguide-Integrated Carbon Nanotube-Silicon Junctions
Riaz, A.; Alam, A.; Selvasundaram, P. B.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Krupke, R.
2019. Advanced electronic materials, 5 (1), 1800265. doi:10.1002/aelm.201800265
Riaz, A.; Alam, A.; Selvasundaram, P. B.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Krupke, R.
2019. Advanced electronic materials, 5 (1), 1800265. doi:10.1002/aelm.201800265
2018
Valley Subband Splitting in Bilayer Graphene Quantum Point Contacts
Kraft, R.; Krainov, I. V.; Gall, V.; Dmitriev, A. P.; Krupke, R.; Gornyi, I. V.; Danneau, R.
2018. Physical review letters, 121 (25), Art.Nr. 257703. doi:10.1103/PhysRevLett.121.257703
Kraft, R.; Krainov, I. V.; Gall, V.; Dmitriev, A. P.; Krupke, R.; Gornyi, I. V.; Danneau, R.
2018. Physical review letters, 121 (25), Art.Nr. 257703. doi:10.1103/PhysRevLett.121.257703
Graphene-enabled and directed nanomaterial placement from solution for large-scale device integration
Engel, M.; Farmer, D. B.; Azpiroz, J. T.; Seo, J.-W. T.; Kang, J.; Avouris, P.; Hersam, M. C.; Krupke, R.; Steiner, M.
2018. Nature Communications, 9 (1), Article number: 4095. doi:10.1038/s41467-018-06604-4
Engel, M.; Farmer, D. B.; Azpiroz, J. T.; Seo, J.-W. T.; Kang, J.; Avouris, P.; Hersam, M. C.; Krupke, R.; Steiner, M.
2018. Nature Communications, 9 (1), Article number: 4095. doi:10.1038/s41467-018-06604-4
Tailoring supercurrent confinement in graphene bilayer weak links
Kraft, R.; Mohrmann, J.; Du, R.; Selvasundaram, P. B.; Irfan, M.; Kanilmaz, U. N.; Wu, F.; Beckmann, D.; Löhneysen, H. von; Krupke, R.; Akhmerov, A.; Gornyi, I.; Danneau, R.
2018. Nature Communications, 9 (1), Art. Nr. 1722. doi:10.1038/s41467-018-04153-4
Kraft, R.; Mohrmann, J.; Du, R.; Selvasundaram, P. B.; Irfan, M.; Kanilmaz, U. N.; Wu, F.; Beckmann, D.; Löhneysen, H. von; Krupke, R.; Akhmerov, A.; Gornyi, I.; Danneau, R.
2018. Nature Communications, 9 (1), Art. Nr. 1722. doi:10.1038/s41467-018-04153-4
Tuning Anti-Klein to Klein Tunneling in Bilayer Graphene
Du, R.; Liu, M.-H.; Mohrmann, J.; Wu, F.; Krupke, R.; Von Löhneysen, H.; Richter, K.; Danneau, R.
2018. Physical review letters, 121 (12), Art.Nr. 127706. doi:10.1103/PhysRevLett.121.127706
Du, R.; Liu, M.-H.; Mohrmann, J.; Wu, F.; Krupke, R.; Von Löhneysen, H.; Richter, K.; Danneau, R.
2018. Physical review letters, 121 (12), Art.Nr. 127706. doi:10.1103/PhysRevLett.121.127706
Carbon nanotubes as emerging quantum-light sources
He, X.; Htoon, H.; Doorn, S. K.; Pernice, W. H. P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C.
2018. Nature materials, 17 (8), 663–670. doi:10.1038/s41563-018-0109-2
He, X.; Htoon, H.; Doorn, S. K.; Pernice, W. H. P.; Pyatkov, F.; Krupke, R.; Jeantet, A.; Chassagneux, Y.; Voisin, C.
2018. Nature materials, 17 (8), 663–670. doi:10.1038/s41563-018-0109-2
Layout influence on microwave performance of graphene field effect transistors
Giambra, M. A.; Benfante, A.; Zeiss, L.; Pernice, R.; Miseikis, V.; Pernice, W. H. P.; Jang, M. H.; Ahn, J.-H.; Cino, A. C.; Stivala, S.; Calandra, E.; Busacca, A. C.; Danneau, R.
2018. Electronics letters, 54 (16), 984–986. doi:10.1049/el.2018.5113
Giambra, M. A.; Benfante, A.; Zeiss, L.; Pernice, R.; Miseikis, V.; Pernice, W. H. P.; Jang, M. H.; Ahn, J.-H.; Cino, A. C.; Stivala, S.; Calandra, E.; Busacca, A. C.; Danneau, R.
2018. Electronics letters, 54 (16), 984–986. doi:10.1049/el.2018.5113
Advances in Carbon Nanotube-Silicon Heterojunction Solar Cells
Tune, D. D.; Flavel, B. S.
2018. Advanced energy materials, 8 (15), Art.-Nr.: 1703241. doi:10.1002/aenm.201703241
Tune, D. D.; Flavel, B. S.
2018. Advanced energy materials, 8 (15), Art.-Nr.: 1703241. doi:10.1002/aenm.201703241
Employing Microwave Graphene Field Effect Transistors for Infrared Radiation Detection
Benfante, A.; Giambra, M. A.; Pernice, R.; Stivala, S.; Calandra, E.; Parisi, A.; Cino, A. C.; Dehm, S.; Danneau, R.; Krupke, R.; Busacca, A. C.
2018. IEEE photonics journal, 10 (2), Art.-Nr.: 6801407. doi:10.1109/JPHOT.2018.2807923
Benfante, A.; Giambra, M. A.; Pernice, R.; Stivala, S.; Calandra, E.; Parisi, A.; Cino, A. C.; Dehm, S.; Danneau, R.; Krupke, R.; Busacca, A. C.
2018. IEEE photonics journal, 10 (2), Art.-Nr.: 6801407. doi:10.1109/JPHOT.2018.2807923
Photocurrent study of all-printed photodetectors on paper made of different transition metal dichalcogenide nanosheets
McManus, D.; Dal Santo, A.; Selvasundaram, P. B.; Krupke, R.; Libassi, A.; Casiraghi, C.
2018. Flexible and printed electronics, 3 (3), Art. Nr.: 034005. doi:10.1088/2058-8585/aaddb5
McManus, D.; Dal Santo, A.; Selvasundaram, P. B.; Krupke, R.; Libassi, A.; Casiraghi, C.
2018. Flexible and printed electronics, 3 (3), Art. Nr.: 034005. doi:10.1088/2058-8585/aaddb5
Effect of Single-walled Carbon Nanotube (SWCNT) Composition on Polyfluorene-Based SWCNT Dispersion Selectivity
Liang, S.; Li, H.; Flavel, B. S.; Adronov, A.
2018. Chemistry - a European journal, 24 (39), 9799–9806. doi:10.1002/chem.201801515
Liang, S.; Li, H.; Flavel, B. S.; Adronov, A.
2018. Chemistry - a European journal, 24 (39), 9799–9806. doi:10.1002/chem.201801515
Formation of nanocrystalline graphene on germanium
Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
2018. Nanoscale, 10 (25), 12156–12162. doi:10.1039/c8nr01261j
Yekani, R.; Rusak, E.; Riaz, A.; Felten, A.; Breitung, B.; Dehm, S.; Perera, D.; Rohrer, J.; Rockstuhl, C.; Krupke, R.
2018. Nanoscale, 10 (25), 12156–12162. doi:10.1039/c8nr01261j
2017
Inner- and outer-wall sorting of double-walled carbon nanotubes
Li, H.; Gordeev, G.; Wasserroth, S.; Chakravadhanula, V. S. K.; Neelakandhan, S. K. C.; Hennrich, F.; Jorio, A.; Reich, S.; Krupke, R.; Flavel, B. S.
2017. Nature nanotechnology. doi:10.1038/nnano.2017.207
Li, H.; Gordeev, G.; Wasserroth, S.; Chakravadhanula, V. S. K.; Neelakandhan, S. K. C.; Hennrich, F.; Jorio, A.; Reich, S.; Krupke, R.; Flavel, B. S.
2017. Nature nanotechnology. doi:10.1038/nnano.2017.207
Wide dynamic range enrichment method of semiconducting single-walled carbon nanotubes with weak field centrifugation
Reis, W. G.; Tomović, Ž.; Weitz, R. T.; Krupke, R.; Mikhael, J.
2017. Scientific reports, 7, 44812. doi:10.1038/srep44812
Reis, W. G.; Tomović, Ž.; Weitz, R. T.; Krupke, R.; Mikhael, J.
2017. Scientific reports, 7, 44812. doi:10.1038/srep44812
Resonant Anti-Stokes Raman Scattering in Single-walled Carbon Nanotubes
Gordeev, G.; Jorio, A.; Kusch, P.; Vieira, B. G. M.; Flavel, B.; Krupke, R.; Barros, E. B.; Reich, S.
2017. Physical review / B, 96 (24), Art.Nr. 245415. doi:10.1103/PhysRevB.96.245415
Gordeev, G.; Jorio, A.; Kusch, P.; Vieira, B. G. M.; Flavel, B.; Krupke, R.; Barros, E. B.; Reich, S.
2017. Physical review / B, 96 (24), Art.Nr. 245415. doi:10.1103/PhysRevB.96.245415
Understanding the graphitization and growth of free-standing nanocrystalline graphene using: In situ transmission electron microscopy
Kumar, C. N. S.; Chakravadhanula, V. S. K.; Riaz, A.; Dehm, S.; Wang, D.; Mu, X.; Flavel, B.; Krupke, R.; Kübel, C.
2017. Nanoscale, 9 (35), 12835–12842. doi:10.1039/c7nr03276e
Kumar, C. N. S.; Chakravadhanula, V. S. K.; Riaz, A.; Dehm, S.; Wang, D.; Mu, X.; Flavel, B.; Krupke, R.; Kübel, C.
2017. Nanoscale, 9 (35), 12835–12842. doi:10.1039/c7nr03276e
Photocurrent spectroscopy of dye-sensitized carbon nanotubes
Alam, A.; Dehm, S.; Hennrich, F.; Zakharko, Y.; Graf, A.; Pfohl, M.; Hossain, I. M.; Kappes, M. M.; Zaumseil, J.; Krupke, R.; Flavel, B. S.
2017. Nanoscale, 9 (31), 11205–11213. doi:10.1039/c7nr04022a
Alam, A.; Dehm, S.; Hennrich, F.; Zakharko, Y.; Graf, A.; Pfohl, M.; Hossain, I. M.; Kappes, M. M.; Zaumseil, J.; Krupke, R.; Flavel, B. S.
2017. Nanoscale, 9 (31), 11205–11213. doi:10.1039/c7nr04022a
Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation
Wei, L.; Flavel, B. S.; Li, W.; Krupke, R.; Chen, Y.
2017. Nanoscale, 9 (32), 11640–11646. doi:10.1039/c7nr03302h
Wei, L.; Flavel, B. S.; Li, W.; Krupke, R.; Chen, Y.
2017. Nanoscale, 9 (32), 11640–11646. doi:10.1039/c7nr03302h
Fitting Single-Walled Carbon Nanotube Optical Spectra
Pfohl, M.; Tune, D. D.; Graf, A.; Zaumseil, J.; Krupke, R.; Flavel, B. S.
2017. ACS omega, 2 (3), 1163–1171. doi:10.1021/acsomega.6b00468
Pfohl, M.; Tune, D. D.; Graf, A.; Zaumseil, J.; Krupke, R.; Flavel, B. S.
2017. ACS omega, 2 (3), 1163–1171. doi:10.1021/acsomega.6b00468
Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers
Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R.
2017. Beilstein journal of nanotechnology, 8 (1), 38–44. doi:10.3762/bjnano.8.5
Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R.
2017. Beilstein journal of nanotechnology, 8 (1), 38–44. doi:10.3762/bjnano.8.5
2016
Highly Efficient and Scalable Separation of Semiconducting Carbon Nanotubes via Weak Field Centrifugation
Reis, W. G.; Weitz, R. T.; Kettner, M.; Kraus, A.; Schwab, M. G.; Tomović, Ž.; Krupke, R.; Mikhael, J.
2016. Scientific reports, 6, 26259. doi:10.1038/srep26259
Reis, W. G.; Weitz, R. T.; Kettner, M.; Kraus, A.; Schwab, M. G.; Tomović, Ž.; Krupke, R.; Mikhael, J.
2016. Scientific reports, 6, 26259. doi:10.1038/srep26259
The effect of dry shear aligning of nanotube thin films on the photovoltaic performance of carbon nanotube–silicon solar cells
Stolz, B. W.; Tune, D. D.; Flavel, B. S.
2016. Beilstein journal of nanotechnology, 7, 1486–1491. doi:10.3762/bjnano.7.141
Stolz, B. W.; Tune, D. D.; Flavel, B. S.
2016. Beilstein journal of nanotechnology, 7, 1486–1491. doi:10.3762/bjnano.7.141
Chiral-index resolved length mapping of carbon nanotubes in solution using electric-field induced differential absorption spectroscopy
Li, W.; Hennrich, F.; Flavel, B. S.; Kappes, M. M.; Krupke, R.
2016. Nanotechnology, 27 (37), Art.Nr.:375706. doi:10.1088/0957-4484/27/37/375706
Li, W.; Hennrich, F.; Flavel, B. S.; Kappes, M. M.; Krupke, R.
2016. Nanotechnology, 27 (37), Art.Nr.:375706. doi:10.1088/0957-4484/27/37/375706
Fully integrated quantum photonic circuit with an electrically driven light source
Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol’tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
2016. Nature photonics. doi:10.1038/nphoton.2016.178
Khasminskaya, S.; Pyatkov, F.; Słowik, K.; Ferrari, S.; Kahl, O.; Kovalyuk, V.; Rath, P.; Vetter, A.; Hennrich, F.; Kappes, M. M.; Gol’tsman, G.; Korneev, A.; Rockstuhl, C.; Krupke, R.; Pernice, W. H. P.
2016. Nature photonics. doi:10.1038/nphoton.2016.178
Probing the Diameter Limit of Single Walled Carbon Nanotubes in SWCNT: Fullerene Solar Cells
Pfohl, M.; Glaser, K.; Graf, A.; Mertens, A.; Tune, D. D.; Puerckhauer, T.; Alam, A.; Wei, L.; Chen, Y.; Zaumseil, J.; Colsmann, A.; Krupke, R.; Flavel, B. S.
2016. Advanced energy materials. doi:10.1002/aenm.201600890
Pfohl, M.; Glaser, K.; Graf, A.; Mertens, A.; Tune, D. D.; Puerckhauer, T.; Alam, A.; Wei, L.; Chen, Y.; Zaumseil, J.; Colsmann, A.; Krupke, R.; Flavel, B. S.
2016. Advanced energy materials. doi:10.1002/aenm.201600890
Cavity-enhanced light emission from electrically driven carbon nanotubes
Pyatkov, F.; Fütterling, V.; Khasminskaya, S.; Flavel, B. S.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Pernice, W. H. P.
2016. Nature photonics, 10 (6), 420–428. doi:10.1038/nphoton.2016.70
Pyatkov, F.; Fütterling, V.; Khasminskaya, S.; Flavel, B. S.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Pernice, W. H. P.
2016. Nature photonics, 10 (6), 420–428. doi:10.1038/nphoton.2016.70
Large scale, selective dispersion of long single-walled carbon nanotubes with high photoluminescence quantum yield by shear force mixing
Graf, A.; Zakharko, Y. E.; Schießl, S. P.; Backes, C.; Pfohl, M.; Flavel, B. S.; Zaumseil, J.
2016. Carbon, 105, 593–599. doi:10.1016/j.carbon.2016.05.002
Graf, A.; Zakharko, Y. E.; Schießl, S. P.; Backes, C.; Pfohl, M.; Flavel, B. S.; Zaumseil, J.
2016. Carbon, 105, 593–599. doi:10.1016/j.carbon.2016.05.002
Correction: Dry shear aligning: A simple and versatile method to smooth and align the surfaces of carbon nanotube thin films
Tune, D. D.; Stolz, B. W.; Pfohl, M.; Flavel, B. S.
2016. Nanoscale, 8 (9), 5387. doi:10.1039/c6nr90039a
Tune, D. D.; Stolz, B. W.; Pfohl, M.; Flavel, B. S.
2016. Nanoscale, 8 (9), 5387. doi:10.1039/c6nr90039a
Dry shear aligning: A simple and versatile method to smooth and align the surfaces of carbon nanotube thin films
Tune, D. D.; Stolz, B. W.; Pfohl, M.; Flavel, B. S.
2016. Nanoscale, 8 (6), 3232–3236. doi:10.1039/c5nr08784h
Tune, D. D.; Stolz, B. W.; Pfohl, M.; Flavel, B. S.
2016. Nanoscale, 8 (6), 3232–3236. doi:10.1039/c5nr08784h
Length-Sorted, Large-Diameter, Polyfluorene-Wrapped Semiconducting Single-Walled Carbon Nanotubes for High-Density, Short-Channel Transistors
Hennrich, F.; Li, W.; Fischer, R.; Lebedkin, S.; Krupke, R.; Kappes, M. M.
2016. ACS Nano, 10 (2), 1888–1895. doi:10.1021/acsnano.5b05572
Hennrich, F.; Li, W.; Fischer, R.; Lebedkin, S.; Krupke, R.; Kappes, M. M.
2016. ACS Nano, 10 (2), 1888–1895. doi:10.1021/acsnano.5b05572
Directional couplers with integrated carbon nanotube incandescent light emitters
Fechner, R. G.; Pyatkov, F.; Khasminskaya, S.; Flavel, B. S.; Krupke, R.; Pernice, W. H. P.
2016. Optics Express, 24 (2), 966–974. doi:10.1364/OE.24.000966
Fechner, R. G.; Pyatkov, F.; Khasminskaya, S.; Flavel, B. S.; Krupke, R.; Pernice, W. H. P.
2016. Optics Express, 24 (2), 966–974. doi:10.1364/OE.24.000966
Performance Enhancement of Polymer-Free Carbon Nanotube Solar Cells via Transfer Matrix Modeling
Pfohl, M.; Glaser, K.; Ludwig, J.; Tune, D. D.; Dehm, S.; Kayser, C.; Colsmann, A.; Krupke, R.; Flavel, B. S.
2016. Advanced Energy Materials, 6 (1), 1501345. doi:10.1002/aenm.201501345
Pfohl, M.; Glaser, K.; Ludwig, J.; Tune, D. D.; Dehm, S.; Kayser, C.; Colsmann, A.; Krupke, R.; Flavel, B. S.
2016. Advanced Energy Materials, 6 (1), 1501345. doi:10.1002/aenm.201501345
2015
Aligned carbon nanotube thin films from liquid crystal polyelectrolyte inks
Tune, D. D.; Blanch, A. J.; Shearer, C. J.; Moore, K. E.; Pfohl, M.; Shapter, J. G.; Flavel, B. S.
2015. ACS applied materials & interfaces, 7, 25857–25864. doi:10.1021/acsami.5b08212
Tune, D. D.; Blanch, A. J.; Shearer, C. J.; Moore, K. E.; Pfohl, M.; Shapter, J. G.; Flavel, B. S.
2015. ACS applied materials & interfaces, 7, 25857–25864. doi:10.1021/acsami.5b08212
Light emission, light detection and strain sensing with nanocrystalline graphene
Riaz, A.; Pyatkov, F.; Alam, A.; Dehm, S.; Felten, A.; Chakravadhanula, V. S. K.; Flavel, B. S.; Kübel, C.; Lemmer, U.; Krupke, R.
2015. Nanotechnology, 26, 325202/1–10. doi:10.1088/0957-4484/26/32/325202
Riaz, A.; Pyatkov, F.; Alam, A.; Dehm, S.; Felten, A.; Chakravadhanula, V. S. K.; Flavel, B. S.; Kübel, C.; Lemmer, U.; Krupke, R.
2015. Nanotechnology, 26, 325202/1–10. doi:10.1088/0957-4484/26/32/325202
Double-walled carbon nanotube processing
Moore, K. E.; Tune, D. D.; Flavel, B. S.
2015. Advanced materials, 27 (20), 3105–3137. doi:10.1002/adma.201405686
Moore, K. E.; Tune, D. D.; Flavel, B. S.
2015. Advanced materials, 27 (20), 3105–3137. doi:10.1002/adma.201405686
Persistent hysteresis in graphene-mica van der Waals heterostructures
Mohrmann, J.; Watanabe, K.; Taniguchi, T.; Danneau, R.
2015. Nanotechnology, 26 (1), 015202/1–7. doi:10.1088/0957-4484/26/1/015202
Mohrmann, J.; Watanabe, K.; Taniguchi, T.; Danneau, R.
2015. Nanotechnology, 26 (1), 015202/1–7. doi:10.1088/0957-4484/26/1/015202
Sorting of double-walled carbon nanotubes according to their outer wall electronic type via a gel permeation method
Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakravadhanula, V. S. K.; Kübel, C.; Krupke, R.; Flavel, B. S.
2015. ACS nano, 9 (4), 3849–3857. doi:10.1021/nn506869h
Moore, K. E.; Pfohl, M.; Tune, D. D.; Hennrich, F.; Dehm, S.; Chakravadhanula, V. S. K.; Kübel, C.; Krupke, R.; Flavel, B. S.
2015. ACS nano, 9 (4), 3849–3857. doi:10.1021/nn506869h
2014
Photocurrent imaging of semiconducting carbon nanotube devices with local mirrors
Alam, A.; Flavel, B. S.; Dehm, S.; Lemmer, U.; Krupke, R.
2014. Physica Status Solidi / B, 251 (12), 2471–2474. doi:10.1002/pssb.201451272
Alam, A.; Flavel, B. S.; Dehm, S.; Lemmer, U.; Krupke, R.
2014. Physica Status Solidi / B, 251 (12), 2471–2474. doi:10.1002/pssb.201451272
Fabrication of carbon nanotube nanogap electrodes by helium ion sputtering for molecular contacts
Thiele, C.; Vieker, H.; Beyer, A.; Flavel, B. S.; Hennrich, F.; Munoz Torres, D.; Eaton, T. R.; Mayor, M.; Kappes, M. M.; Gölzhäuser, A.; Löhneysen, H. von; Krupke, R.
2014. Applied physics letters, 104 (10), Art.Nr. 103102. doi:10.1063/1.4868097
Thiele, C.; Vieker, H.; Beyer, A.; Flavel, B. S.; Hennrich, F.; Munoz Torres, D.; Eaton, T. R.; Mayor, M.; Kappes, M. M.; Gölzhäuser, A.; Löhneysen, H. von; Krupke, R.
2014. Applied physics letters, 104 (10), Art.Nr. 103102. doi:10.1063/1.4868097
Klein, schnell, hell. Kohlenstoff-Nanoröhren
Engel, M.; Hennrich, F.; Krupke, R.
2014. Physik in unserer Zeit, 45, 243–248. doi:10.1002/piuz.201401364
Engel, M.; Hennrich, F.; Krupke, R.
2014. Physik in unserer Zeit, 45, 243–248. doi:10.1002/piuz.201401364
Deposition of semiconducting single-walled carbon nanotubes using light-assisted dielectrophoresis
Li, W.; Pyatkov, F.; Dehm, S.; Flavel, B. S.; Krupke, R.
2014. Physica status solidi / B, 251 (12), 2475–2479. doi:10.1002/pssb.201451280
Li, W.; Pyatkov, F.; Dehm, S.; Flavel, B. S.; Krupke, R.
2014. Physica status solidi / B, 251 (12), 2475–2479. doi:10.1002/pssb.201451280
Correction to separation of single-walled carbon nanotubes with a gel permeation chromatography system
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F.
2014. ACS nano, 8, 9687–9687. doi:10.1021/nn504707k
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F.
2014. ACS nano, 8, 9687–9687. doi:10.1021/nn504707k
Nanotube film metallicity and its effect on the performance of carbon nanotube-silicon solar cells
Tune, D. D.; Blanch, A. J.; Krupke, R.; Flavel, B. S.; Shapter, J. G.
2014. Physica status solidi A, 211 (7), 1479–1487. doi:10.1002/pssa.201431043
Tune, D. D.; Blanch, A. J.; Krupke, R.; Flavel, B. S.; Shapter, J. G.
2014. Physica status solidi A, 211 (7), 1479–1487. doi:10.1002/pssa.201431043
Waveguide-integrated light-emitting carbon nanotubes
Khasminskaya, S.; Pyatkov, F.; Flavel, B. S.; Pernice, W. H.
2014. Advanced Materials, 26, 3465–3472. doi:10.1002/adma.201305634
Khasminskaya, S.; Pyatkov, F.; Flavel, B. S.; Pernice, W. H.
2014. Advanced Materials, 26, 3465–3472. doi:10.1002/adma.201305634
Separation of double-walled carbon nanotubes by size exclusion column chromatography
Moore, K. E.; Pfohl, M.; Hennrich, F.; Chakradhanula, V. S. K.; Kübel, C.; Kappes, M. M.; Shapter, J. G.; Krupke, R.; Flavel, B. S.
2014. ACS Nano, 8, 6756–6764. doi:10.1021/nn500756a
Moore, K. E.; Pfohl, M.; Hennrich, F.; Chakradhanula, V. S. K.; Kübel, C.; Kappes, M. M.; Shapter, J. G.; Krupke, R.; Flavel, B. S.
2014. ACS Nano, 8, 6756–6764. doi:10.1021/nn500756a
Separation of single-walled carbon nanotubes with a gel permeation chromatography system
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F.
2014. ACS nano, 8, 1817–1826. doi:10.1021/nn4062116
Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F.
2014. ACS nano, 8, 1817–1826. doi:10.1021/nn4062116
Photocurrent spectroscopy of (n,m) sorted solution-processed single-walled carbon nanotubes
Engel, M.; Moore, K. E.; Alam, A.; Dehm, S.; Krupke, R.; Flavel, B. S.
2014. ACS nano, 8, 9324–9331. doi:10.1021/nn503278d
Engel, M.; Moore, K. E.; Alam, A.; Dehm, S.; Krupke, R.; Flavel, B. S.
2014. ACS nano, 8, 9324–9331. doi:10.1021/nn503278d
Charge distribution of metallic single walled carbon nanotube-graphene junctions
Robert, P. T.; Danneau, R.
2014. New journal of physics, 16 (1), Art.Nr. 013019. doi:10.1088/1367-2630/16/1/013019
Robert, P. T.; Danneau, R.
2014. New journal of physics, 16 (1), Art.Nr. 013019. doi:10.1088/1367-2630/16/1/013019
2013
Fermi energy shift in deposited metallic nanotubes: A Raman scattering study
Hatting, B.; Heeg, S.; Ataka, K.; Heberle, J.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Reich, S.
2013. Physical Review B - Condensed Matter and Materials Physics, 87 (16), 165442/1–5. doi:10.1103/PhysRevB.87.165442
Hatting, B.; Heeg, S.; Ataka, K.; Heberle, J.; Hennrich, F.; Kappes, M. M.; Krupke, R.; Reich, S.
2013. Physical Review B - Condensed Matter and Materials Physics, 87 (16), 165442/1–5. doi:10.1103/PhysRevB.87.165442
Separation of single-walled carbon nanotubes by 1-dodecanol-mediated size-exclusion chromatography
Flavel, B. S.; Kappes, M. M.; Krupke, R.; Hennrich, F.
2013. ACS Nano, 7 (4), 3557–3564. doi:10.1021/nn4004956
Flavel, B. S.; Kappes, M. M.; Krupke, R.; Hennrich, F.
2013. ACS Nano, 7 (4), 3557–3564. doi:10.1021/nn4004956
Catalytic subsurface etching of nanoscale channels in graphite
Lukas, M.; Meded, V.; Vijayaraghavan, A.; Song, L.; Ajayan, P. M.; Fink, K.; Wenzel, W.; Krupke, R.
2013. Nature Communications, 4, 1379. doi:10.1038/ncomms2399
Lukas, M.; Meded, V.; Vijayaraghavan, A.; Song, L.; Ajayan, P. M.; Fink, K.; Wenzel, W.; Krupke, R.
2013. Nature Communications, 4, 1379. doi:10.1038/ncomms2399
High-quality Si₃N₄ circuits as a platform for graphene-based nanophotonic devices
Gruhler, N.; Benz, C.; Jang, H.; Ahn, J.-H.; Danneau, R.; Pernice, W. H. P.
2013. Optics Express, 21 (25), 31678–31689. doi:10.1364/OE.21.031678
Gruhler, N.; Benz, C.; Jang, H.; Ahn, J.-H.; Danneau, R.; Pernice, W. H. P.
2013. Optics Express, 21 (25), 31678–31689. doi:10.1364/OE.21.031678
Electron-beam-induced direct etching of graphene
Thiele, C.; Felten, A.; Echtermeyer, T. J.; Ferrari, A. C.; Casiraghi, C.; Löhneysen, H. von; Krupke, R.
2013. Carbon, 64, 84–91. doi:10.1016/j.carbon.2013.07.038
Thiele, C.; Felten, A.; Echtermeyer, T. J.; Ferrari, A. C.; Casiraghi, C.; Löhneysen, H. von; Krupke, R.
2013. Carbon, 64, 84–91. doi:10.1016/j.carbon.2013.07.038
Electroluminescence in single layer MoS₂
Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M.
2013. Nano letters, 13 (4), 1416–1421. doi:10.1021/nl400516a
Sundaram, R. S.; Engel, M.; Lombardo, A.; Krupke, R.; Ferrari, A. C.; Avouris, P.; Steiner, M.
2013. Nano letters, 13 (4), 1416–1421. doi:10.1021/nl400516a
Enhancing Raman signals with an interferometrically controlled AFM tip
Oron-Carl, M.; Krupke, R.
2013. Nanotechnology, 24, 415701/1–6. doi:10.1088/0957-4484/24/41/415701
Oron-Carl, M.; Krupke, R.
2013. Nanotechnology, 24, 415701/1–6. doi:10.1088/0957-4484/24/41/415701
Controlled modification of mono- and bilayer graphene in O₂, H₂ and CF₄ plasmas
Felten, A.; Eckmann, A.; Pireaux, J. J.; Krupke, R.; Casiraghi, C.
2013. Nanotechnology, 24, 355705/1–8. doi:10.1088/0957-4484/24/35/355705
Felten, A.; Eckmann, A.; Pireaux, J. J.; Krupke, R.; Casiraghi, C.
2013. Nanotechnology, 24, 355705/1–8. doi:10.1088/0957-4484/24/35/355705
The role of nanotubes in carbon nanotube-silicon solar cells
Tune, D. D.; Hennrich, F.; Dehm, S.; Klein, M. F. G.; Glaser, K.; Colsmann, A.; Shapter, J. G.; Lemmer, U.; Kappes, M. M.; Krupke, R.; Flavel, B. S.
2013. Advanced Energy Materials, 3 (8), 1091–1097. doi:10.1002/aenm.201200949
Tune, D. D.; Hennrich, F.; Dehm, S.; Klein, M. F. G.; Glaser, K.; Colsmann, A.; Shapter, J. G.; Lemmer, U.; Kappes, M. M.; Krupke, R.; Flavel, B. S.
2013. Advanced Energy Materials, 3 (8), 1091–1097. doi:10.1002/aenm.201200949
Graphene on boron nitride microwave transistors driven by graphene nanoribbon back-gates
Benz, C.; Thürmer, M.; Wu, F.; Ben Aziza, Z.; Mohrmann, J.; Löhneysen, H. von; Watanabe, K.; Taniguchi, T.; Danneau, R.
2013. Applied physics letters, 102, Art.Nr. 033505. doi:10.1063/1.4788818
Benz, C.; Thürmer, M.; Wu, F.; Ben Aziza, Z.; Mohrmann, J.; Löhneysen, H. von; Watanabe, K.; Taniguchi, T.; Danneau, R.
2013. Applied physics letters, 102, Art.Nr. 033505. doi:10.1063/1.4788818
Single- and double-sided chemical functionalization of bilayer graphene
Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J. J.; Hirtz, M.; Krupke, R.; Casiraghi, C.
2013. Small, 9 (4), 631–639. doi:10.1002/smll.201202214
Felten, A.; Flavel, B. S.; Britnell, L.; Eckmann, A.; Louette, P.; Pireaux, J. J.; Hirtz, M.; Krupke, R.; Casiraghi, C.
2013. Small, 9 (4), 631–639. doi:10.1002/smll.201202214
2012
Growth of non-branching Ag nanowires via ion migrational-transport controlled 3D electrodeposition
Ding, C.; Tian, C.; Krupke, R.; Fang, J.
2012. CrystEngComm, 14, 875–879. doi:10.1039/c1ce05686g
Ding, C.; Tian, C.; Krupke, R.; Fang, J.
2012. CrystEngComm, 14, 875–879. doi:10.1039/c1ce05686g
Anisotropic Organization and Microscopic Manipulation of Self-Assembling Synthetic Porphyrin Microrods That Mimic Chlorosomes : Bacterial Light-Harvesting Systems
Chappaz-Gillot, C.; Marek, P. L.; Blaive, B. J.; Canard, G.; Bürck, J.; Garab, G.; Hahn, H.; Jávorfi, T.; Kelemen, L.; Krupke, R.; Mössinger, D.; Ormos, P.; Reddy, C. M.; Roussel, C.; Steinbach, G.; Szabó, M.; Ulrich, A. S.; Vanthuyne, N.; Vijayaraghavan, A.; Zupcanova, A.; Balaban, T. S.
2012. Journal of the American Chemical Society, 134 (2), 944–954. doi:10.1021/ja203838p
Chappaz-Gillot, C.; Marek, P. L.; Blaive, B. J.; Canard, G.; Bürck, J.; Garab, G.; Hahn, H.; Jávorfi, T.; Kelemen, L.; Krupke, R.; Mössinger, D.; Ormos, P.; Reddy, C. M.; Roussel, C.; Steinbach, G.; Szabó, M.; Ulrich, A. S.; Vanthuyne, N.; Vijayaraghavan, A.; Zupcanova, A.; Balaban, T. S.
2012. Journal of the American Chemical Society, 134 (2), 944–954. doi:10.1021/ja203838p
Leuchtendes Graphen
Engel, M.; Krupke, R.
2012. Physik in unserer Zeit, 43, 268–269. doi:10.1002/piuz.201290095
Engel, M.; Krupke, R.
2012. Physik in unserer Zeit, 43, 268–269. doi:10.1002/piuz.201290095
High-frequency performance of scaled carbon nanotube array field-effect transistors
Steiner, M.; Engel, M.; Lin, Y. M.; Wu, Y.; Jenkins, K.; Farmer, D. B.; Humes, J. J.; Yoder, N.; Seo, J. W. T.; Green, A. A.; Hersam, M. C.; Krupke, R.; Avouris, P.
2012. Applied Physics Letters, 101, 053123/1–4. doi:10.1063/1.4742325
Steiner, M.; Engel, M.; Lin, Y. M.; Wu, Y.; Jenkins, K.; Farmer, D. B.; Humes, J. J.; Yoder, N.; Seo, J. W. T.; Green, A. A.; Hersam, M. C.; Krupke, R.; Avouris, P.
2012. Applied Physics Letters, 101, 053123/1–4. doi:10.1063/1.4742325
Probing the nature of defects in graphene by Raman spectroscopy
Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C.
2012. Nano letters, 12 (8), 3925–3030. doi:10.1021/nl300901a
Eckmann, A.; Felten, A.; Mishchenko, A.; Britnell, L.; Krupke, R.; Novoselov, K. S.; Casiraghi, C.
2012. Nano letters, 12 (8), 3925–3030. doi:10.1021/nl300901a
Carbon nanotube-silicon solar cells
Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G.
2012. Advanced Energy Materials, 2, 1043–1055. doi:10.1002/aenm.201200249
Tune, D. D.; Flavel, B. S.; Krupke, R.; Shapter, J. G.
2012. Advanced Energy Materials, 2, 1043–1055. doi:10.1002/aenm.201200249
Spatially resolved electrostatic potential and photocurrent generation in carbon nanotube array devices
Engel, M.; Steiner, M.; Sundaram, R. S.; Krupke, R.; Green, A. A.; Hersam, M. C.; Avouris, P.
2012. ACS Nano, 6, 7303–7310. doi:10.1021/nn302416e
Engel, M.; Steiner, M.; Sundaram, R. S.; Krupke, R.; Green, A. A.; Hersam, M. C.; Avouris, P.
2012. ACS Nano, 6, 7303–7310. doi:10.1021/nn302416e
Light–matter interaction in a microcavity-controlled graphene transistor
Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. von; Avouris, P.; Krupke, R.
2012. Nature Communications, 3 (3), Art. Nr.: 906. doi:10.1038/ncomms1911
Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A. C.; Löhneysen, H. von; Avouris, P.; Krupke, R.
2012. Nature Communications, 3 (3), Art. Nr.: 906. doi:10.1038/ncomms1911
Antenna-enhanced photocurrent microscopy on single-walled carbon nanotubes at 30 nm resolution
Rauhut, N.; Engel, M.; Steiner, M.; Krupke, R.; Avuris, P.; Hartschuh, A.
2012. ACS Nano, 6, 6416–6421. doi:10.1021/nn301979c
Rauhut, N.; Engel, M.; Steiner, M.; Krupke, R.; Avuris, P.; Hartschuh, A.
2012. ACS Nano, 6, 6416–6421. doi:10.1021/nn301979c
2011
Graphene microwave transistors on sapphire substrates
Pallecchi, E.; Benz, C.; Betz, A. C.; Löhneysen, H. von; Placais, B.; Danneau, R.
2011. Applied physics letters, 99 (11), Art.-Nr.: 113502. doi:10.1063/1.3633105
Pallecchi, E.; Benz, C.; Betz, A. C.; Löhneysen, H. von; Placais, B.; Danneau, R.
2011. Applied physics letters, 99 (11), Art.-Nr.: 113502. doi:10.1063/1.3633105
Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices
Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Lemmer, U.; Krupke, R.
2011. Optics Express, 19 (23), A1184-A1189. doi:10.1364/OE.19.0A1184
Pfeiffer, M. H. P.; Stürzl, N.; Marquardt, C. W.; Engel, M.; Dehm, S.; Hennrich, F.; Kappes, M. M.; Lemmer, U.; Krupke, R.
2011. Optics Express, 19 (23), A1184-A1189. doi:10.1364/OE.19.0A1184
Controlled fabrication of single-walled carbon nanotube electrodes by electron-beam-induced oxidation
Thiele, C.; Engel, M.; Hennrich, F.; Kappes, M. M.; Johnsen, K.-P.; Frase, C. G.; Löhneysen, H. von; Krupke, R.
2011. Applied physics letters, 99 (17), Art.Nr. 173105. doi:10.1063/1.3656736
Thiele, C.; Engel, M.; Hennrich, F.; Kappes, M. M.; Johnsen, K.-P.; Frase, C. G.; Löhneysen, H. von; Krupke, R.
2011. Applied physics letters, 99 (17), Art.Nr. 173105. doi:10.1063/1.3656736
Hydrogen sensing with diameter- and chirality-sorted carbon nanotubes
Ganzhorn, M.; Vijayaraghavan, A.; Dehm, S.; Hennrich, F.; Green, A. A.; Fichtner, M.; Voigt, A.; Rapp, M.; Löhneysen, H. von; Hersam, M. C.; Kappes, M. M.; Krupke, R.
2011. ACS Nano, 5 (3), 1670–1676. doi:10.1021/nn101992g
Ganzhorn, M.; Vijayaraghavan, A.; Dehm, S.; Hennrich, F.; Green, A. A.; Fichtner, M.; Voigt, A.; Rapp, M.; Löhneysen, H. von; Hersam, M. C.; Kappes, M. M.; Krupke, R.
2011. ACS Nano, 5 (3), 1670–1676. doi:10.1021/nn101992g
A scalable, CMOS-compatible assembly of ambipolar semiconducting single-walled carbon nanotube devices
Ganzhorn, M.; Vijayaraghavan, A.; Green, A. A.; Dehm, S.; Voigt, A.; Rapp, M.; Hersam, M. C.; Krupke, R. A.
2011. Advanced Materials, 23 (15), 1734–1738. doi:10.1002/adma.201004640
Ganzhorn, M.; Vijayaraghavan, A.; Green, A. A.; Dehm, S.; Voigt, A.; Rapp, M.; Hersam, M. C.; Krupke, R. A.
2011. Advanced Materials, 23 (15), 1734–1738. doi:10.1002/adma.201004640
Imaging conduction pathways in carbon nanotube network transistors by voltage-contrast scanning electron microscopy
Vijayaraghavan, A.; Timmermans, M. Y.; Grigoras, K.; Nasibulin, A. G.; Kauppinen, E. I.; Krupke, R.
2011. Nanotechnology, 22, 265715/1–5. doi:10.1088/0957-4484/22/26/265715
Vijayaraghavan, A.; Timmermans, M. Y.; Grigoras, K.; Nasibulin, A. G.; Kauppinen, E. I.; Krupke, R.
2011. Nanotechnology, 22, 265715/1–5. doi:10.1088/0957-4484/22/26/265715
The graphene - gold interface and its implications for nanoelectronics
Sundaram, R. S.; Steiner, M.; Chiu, H. Y.; Engel, M.; Bol, A. A.; Krupke, R.; Burghard, M.; Kern, K.; Avouris, P.
2011. Nano Letters, 11, 3833–3837. doi:10.1021/nl201907u
Sundaram, R. S.; Steiner, M.; Chiu, H. Y.; Engel, M.; Bol, A. A.; Krupke, R.; Burghard, M.; Kern, K.; Avouris, P.
2011. Nano Letters, 11, 3833–3837. doi:10.1021/nl201907u
Synthesis and optical properties of molecular rods comprising a central core-substituted naphthalenediimide chromophore for carbon nanotube junctions
Grunder, S.; Munoz Torres, D.; Marquardt, C.; Blaszczyk, A.; Krupke, R.; Mayor, M.
2011. European journal of organic chemistry, 2011 (3), 478–496. doi:10.1002/ejoc.201001415
Grunder, S.; Munoz Torres, D.; Marquardt, C.; Blaszczyk, A.; Krupke, R.; Mayor, M.
2011. European journal of organic chemistry, 2011 (3), 478–496. doi:10.1002/ejoc.201001415
2010
Toward Single-Chirality Carbon Nanotube Device Arrays
Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M.; Krupke, R.
2010. ACS nano, 4 (5), 2748–2753. doi:10.1021/nn100337t
Vijayaraghavan, A.; Hennrich, F.; Stürzl, N.; Engel, M.; Ganzhorn, M.; Oron-Carl, M.; Marquardt, C. W.; Dehm, S.; Lebedkin, S.; Kappes, M. M.; Krupke, R.
2010. ACS nano, 4 (5), 2748–2753. doi:10.1021/nn100337t
Phonon-Assisted Electroluminescence from Metallic Carbon Nanotubes and Graphene
Essig, S.; Marquardt, C. W.; Vijayaraghavan, A.; Ganzhorn, M.; Dehm, S.; Hennrich, F.; Ou, F.; Green, A. A.; Scasia, C.; Bonaccorso, F.; Bohnen, K.-P.; Löhneysen, H. von; Kappes, M. M.; Ajayan, P.; Hersam, M. C.; Ferrari, A.; Krupke, R.
2010. Nano letters, 10 (5), 1589–1594. doi:10.1021/nl9039795
Essig, S.; Marquardt, C. W.; Vijayaraghavan, A.; Ganzhorn, M.; Dehm, S.; Hennrich, F.; Ou, F.; Green, A. A.; Scasia, C.; Bonaccorso, F.; Bohnen, K.-P.; Löhneysen, H. von; Kappes, M. M.; Ajayan, P.; Hersam, M. C.; Ferrari, A.; Krupke, R.
2010. Nano letters, 10 (5), 1589–1594. doi:10.1021/nl9039795
The polarized carbon nanotube thin film LED
Kinoshita, M.; Steiner, M.; Engel, M.; Small, J. P.; Green, A. A.; Hersam, M. C.; Krupke, R.; Mendez, E. E.; Avouris, P.
2010. Optics Express, 18, 25738–25745. doi:10.1364/OE.18.025738
Kinoshita, M.; Steiner, M.; Engel, M.; Small, J. P.; Green, A. A.; Hersam, M. C.; Krupke, R.; Mendez, E. E.; Avouris, P.
2010. Optics Express, 18, 25738–25745. doi:10.1364/OE.18.025738
Electroluminescence from a single nanotube-molecule-nanotube junction
Marquardt, C. W.; Grunder, S.; Blaszczyk, A.; Dehm, S.; Hennrich, F.; Löhneysen, H. von; Mayor, M.; Krupke, R.
2010. Nature Nanotechnology, 5, 863–67. doi:10.1038/nnano.2010.230
Marquardt, C. W.; Grunder, S.; Blaszczyk, A.; Dehm, S.; Hennrich, F.; Löhneysen, H. von; Mayor, M.; Krupke, R.
2010. Nature Nanotechnology, 5, 863–67. doi:10.1038/nnano.2010.230
Ultraviolet photodetector arrays assembled by dielektrophoresis of ZnO nanoparticles
Yan, W.; Mechau, N.; Hahn, H.; Krupke, R.
2010. Nanotechnology, 21, 115501/1–7. doi:10.1088/0957-4484/21/11/115501
Yan, W.; Mechau, N.; Hahn, H.; Krupke, R.
2010. Nanotechnology, 21, 115501/1–7. doi:10.1088/0957-4484/21/11/115501
Imaging defects and junctions in single-walled carbon nanotubes by voltage-contrast scanning electron microscopy
Vijayaraghavan, A.; Marquardt, C. W.; Dehm, S.; Hennrich, F.; Krupke, R.
2010. Carbon, 48, 494–500. doi:10.1016/j.carbon.2009.09.067
Vijayaraghavan, A.; Marquardt, C. W.; Dehm, S.; Hennrich, F.; Krupke, R.
2010. Carbon, 48, 494–500. doi:10.1016/j.carbon.2009.09.067
2009
Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening
Vijayaraghavan, A.; Sciascia, C.; Dehm, S.; Lombardo, A.; Bonetti, A.; Ferrari, A. C.; Krupke, R.
2009. ACS Nano, 3, 1729–34. doi:10.1021/nn900288d
Vijayaraghavan, A.; Sciascia, C.; Dehm, S.; Lombardo, A.; Bonetti, A.; Ferrari, A. C.; Krupke, R.
2009. ACS Nano, 3, 1729–34. doi:10.1021/nn900288d
Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites
Fang, J.; Hahn, H.; Krupke, R.; Schramm, F.; Scherer, T.; Ding, B.; Song, X.
2009. Chemical Communications, 9, 1130–32. doi:10.1039/b819003h
Fang, J.; Hahn, H.; Krupke, R.; Schramm, F.; Scherer, T.; Ding, B.; Song, X.
2009. Chemical Communications, 9, 1130–32. doi:10.1039/b819003h
Shape-persistent macrocycles comprising perfluorinated benzene subunits: synthesis, aggregation behaviour and unexpected μ-rod formation
Shu, L.; Müri, M.; Krupke, R.; Mayor, M.
2009. Organic and Biomolecular Chemistry, 7, 1081–92. doi:10.1039/b817274a
Shu, L.; Müri, M.; Krupke, R.; Mayor, M.
2009. Organic and Biomolecular Chemistry, 7, 1081–92. doi:10.1039/b817274a
2008
Separation techniques for carbon nanotubes
Krupke, R.; Hennrich, F.
2008. Chemistry of carbon nanotubes. Ed.: V.A. Basiuk, American Scientific Publishers
Krupke, R.; Hennrich, F.
2008. Chemistry of carbon nanotubes. Ed.: V.A. Basiuk, American Scientific Publishers
Imaging electronic structure of carbon nanotubes by voltage-contrast scanning electron microscopy
Vijayaraghavan, A.; Blatt, S.; Marquardt, C.; Dehm, S.; Wahi, R.; Hennrich, F.; Krupke, R.
2008. Nano Research, 1, 321–32. doi:10.1007/s12274-008-8034-3
Vijayaraghavan, A.; Blatt, S.; Marquardt, C.; Dehm, S.; Wahi, R.; Hennrich, F.; Krupke, R.
2008. Nano Research, 1, 321–32. doi:10.1007/s12274-008-8034-3
Reversible metal-insulator transitions in metallic single-walled carbon nanotubes
Marquardt, C. W.; Dehm, S.; Vijayaraghavan, A.; Blatt, S.; Hennrich, F.; Krupke, R.
2008. Nano Letters, 10.1021/nl801288d, 8, 2767–72. doi:10.1021%2Fnl801288d
Marquardt, C. W.; Dehm, S.; Vijayaraghavan, A.; Blatt, S.; Hennrich, F.; Krupke, R.
2008. Nano Letters, 10.1021/nl801288d, 8, 2767–72. doi:10.1021%2Fnl801288d
Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes
Oron-Carl, M.; Krupke, R.
2008. Physical Review Letters, 100, 127401/1–4. doi:10.1103/PhysRevLett.100.127401
Oron-Carl, M.; Krupke, R.
2008. Physical Review Letters, 100, 127401/1–4. doi:10.1103/PhysRevLett.100.127401
2007
Ultra-Large-Scale Directed Assembly of Single-Walled Carbon Nanotube Devices
Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R.
2007. Nano letters, 7 (6), 1556–1560. doi:10.1021/nl0703727
Vijayaraghavan, A.; Blatt, S.; Weissenberger, D.; Oron-Carl, M.; Hennrich, F.; Gerthsen, D.; Hahn, H.; Krupke, R.
2007. Nano letters, 7 (6), 1556–1560. doi:10.1021/nl0703727
The Mechanism of Cavitation-Induced Scission of Single-Walled Carbon Nanotubes
Hennrich, F.; Krupke, R.; Arnold, K.; Stütz, J. A. R.; Lebedkin, S.; Koch, T.; Schimmel, T.; Kappes, M. M.
2007. The journal of physical chemistry <Washington, DC> / B, 111 (8), 1932–1937. doi:10.1021/jp065262n
Hennrich, F.; Krupke, R.; Arnold, K.; Stütz, J. A. R.; Lebedkin, S.; Koch, T.; Schimmel, T.; Kappes, M. M.
2007. The journal of physical chemistry <Washington, DC> / B, 111 (8), 1932–1937. doi:10.1021/jp065262n
Influence of structural and dielectric anisotropy on the dielectrophoresis of single-walled carbon nanotubes
Blatt, S.; Hennrich, F.; Löhneysen, H. von; Kappes, M. M.; Vijayaraghavan, A.; Krupke, R.
2007. Nano Letters, 7, 1960–66. doi:10.1021/nl0706751
Blatt, S.; Hennrich, F.; Löhneysen, H. von; Kappes, M. M.; Vijayaraghavan, A.; Krupke, R.
2007. Nano Letters, 7, 1960–66. doi:10.1021/nl0706751
2006
Length separation studies of single walled carbon nanotube dispersions
Arnold, K.; Hennrich, F.; Krupke, R.; Lebedkin, S.; Kappes, M. M.
2006. Physica status solidi (b), 243, 3073–76. doi:10.1002/pssb.200669196
Arnold, K.; Hennrich, F.; Krupke, R.; Lebedkin, S.; Kappes, M. M.
2006. Physica status solidi (b), 243, 3073–76. doi:10.1002/pssb.200669196
Probing dielectrophoretic force fields with metallic carbon nanotubes
Marquardt, C. W.; Blatt, S.; Hennrich, F.; Löhneysen, H. von; Krupke, R.
2006. Applied Physics Letters, 89, 183117/1–3. doi:10.1063/1.2372771
Marquardt, C. W.; Blatt, S.; Hennrich, F.; Löhneysen, H. von; Krupke, R.
2006. Applied Physics Letters, 89, 183117/1–3. doi:10.1063/1.2372771
Thin films of metallic carbon nanotubes prepared by dielectrophoresis
Krupke, R.; Linden, S.; Rapp, M.; Hennrich, F.
2006. Advanced Materials, 18, 1468–70. doi:10.1002/adma.200600134
Krupke, R.; Linden, S.; Rapp, M.; Hennrich, F.
2006. Advanced Materials, 18, 1468–70. doi:10.1002/adma.200600134
2005
Sputtering of Y Ba Cu O
Krupke, R.; Azoulay, M.; Deutscher, G.
2005. Second-Generation HTS Conductors. Ed.: A. Goyal, 97–108, Kluwer Academic Publishers. doi:10.1007/0-387-25839-6_7
Krupke, R.; Azoulay, M.; Deutscher, G.
2005. Second-Generation HTS Conductors. Ed.: A. Goyal, 97–108, Kluwer Academic Publishers. doi:10.1007/0-387-25839-6_7
Frequency Dependence of the Dielectrophoretic Separation of Single-Walled Carbon Nanotubes
Hennrich, F.; Krupke, R.; Kappes, M. M.; Löhneysen, H. von
2005. Journal of nanoscience and nanotechnology, 5 (7), 1166–1171. doi:10.1166/jnn.2005.154
Hennrich, F.; Krupke, R.; Kappes, M. M.; Löhneysen, H. von
2005. Journal of nanoscience and nanotechnology, 5 (7), 1166–1171. doi:10.1166/jnn.2005.154
On the electron-phonon coupling of individual single-walled carbon nanotubes
Oron-Carl, M.; Hennrich, F.; Kappes, M. M.; Löhneysen, H. von; Krupke, R.
2005. Nano letters, 5 (9), 1761–1767. doi:10.1021/nl051107t
Oron-Carl, M.; Hennrich, F.; Kappes, M. M.; Löhneysen, H. von; Krupke, R.
2005. Nano letters, 5 (9), 1761–1767. doi:10.1021/nl051107t
Raman spectroscopy of individual single-walled carbon nanotubes from various sources
Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. M.
2005. The journal of physical chemistry <Washington, DC> / B, 109, 10567–10573. doi:10.1021/jp0441745
Hennrich, F.; Krupke, R.; Lebedkin, S.; Arnold, K.; Fischer, R.; Resasco, D. E.; Kappes, M. M.
2005. The journal of physical chemistry <Washington, DC> / B, 109, 10567–10573. doi:10.1021/jp0441745
Comment on "Using the selective functionalization of metallic single-walled carbon nanotubes to control dielectrophoretic mobility"
Krupke, R.; Hennrich, F.
2005. Journal of Physical Chemistry B, 109, 17014–15. doi:10.1021/jp0447035
Krupke, R.; Hennrich, F.
2005. Journal of Physical Chemistry B, 109, 17014–15. doi:10.1021/jp0447035
Separation techniques for carbon nanotubes
Krupke, R.; Hennrich, F.
2005. Advanced Engineering Materials, 7, 111–16. doi:10.1002/adem.200400170
Krupke, R.; Hennrich, F.
2005. Advanced Engineering Materials, 7, 111–16. doi:10.1002/adem.200400170
2004
Surface Conductance Induced Dielectrophoresis of Semiconducting Single-Walled Carbon Nanotubes
Krupke, R.; Hennrich, F.; Kappes, M. M.; Löhneysen, H. von
2004. Nano letters, 4 (8), 1395–1399. doi:10.1021/nl0493794
Krupke, R.; Hennrich, F.; Kappes, M. M.; Löhneysen, H. von
2004. Nano letters, 4 (8), 1395–1399. doi:10.1021/nl0493794
2003
Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes
Krupke, R.; Hennrich, F.; Loehneysen, H. von; Kappes, M. M.
2003. Science, 301 (5631), 344–347. doi:10.1126/science.1086534
Krupke, R.; Hennrich, F.; Loehneysen, H. von; Kappes, M. M.
2003. Science, 301 (5631), 344–347. doi:10.1126/science.1086534
Contacting single bundles of carbon nanotubes with alternating electric fields
Krupke, R.; Hennrich, F.; Weber, H. B.; Beckmann, D.; Hampe, O.; Malik, S.; Kappes, M. M.; Loehneysen, H. v.
2003. Journal of applied physics, 76 (3), 397–400. doi:10.1007/s00339-002-1592-4
Krupke, R.; Hennrich, F.; Weber, H. B.; Beckmann, D.; Hampe, O.; Malik, S.; Kappes, M. M.; Loehneysen, H. v.
2003. Journal of applied physics, 76 (3), 397–400. doi:10.1007/s00339-002-1592-4
FTIR-luminescence mapping of dispersed single-walled carbon nanotubes
Lebedkin, S.; Arnold, K.; Hennrich, F.; Krupke, R.; Renker, B.; Kappes, M. M.
2003. New Journal of Physics, 5, 140. doi:10.1088/1367-2630/5/1/140
Lebedkin, S.; Arnold, K.; Hennrich, F.; Krupke, R.; Renker, B.; Kappes, M. M.
2003. New Journal of Physics, 5, 140. doi:10.1088/1367-2630/5/1/140
Simultaneous deposition of metallic bundles of single-walled carbon nanotubes using Ac-dielectrophoresis
Krupke, R.; Hennrich, F.; Weber, H. B.; Kappes, M. M.; Löhneysen, H. von
2003. Nano Letters, 3, 1019–23. doi:10.1021/nl0342343
Krupke, R.; Hennrich, F.; Weber, H. B.; Kappes, M. M.; Löhneysen, H. von
2003. Nano Letters, 3, 1019–23. doi:10.1021/nl0342343
Near-infrared absorbance of single-walled carbon nanotubes dispersed in dimethylformamide
Krupke, R.; Hennrich, F.; Hampe, O.; Kappes, M. M.
2003. The Journal of Physical Chemistry B, 107, 5667–69. doi:10.1021/jp034077w
Krupke, R.; Hennrich, F.; Hampe, O.; Kappes, M. M.
2003. The Journal of Physical Chemistry B, 107, 5667–69. doi:10.1021/jp034077w
2002
Patterning and Visualizing Self-Assembled Monolayers with Low-Energy Electrons
Krupke, R.; Malik, S.; Weber, H. B.; Hampe, O.; Kappes, M. M.; Loehneysen, H. v.
2002. Nano letters, 2 (10), 1161–1164. doi:10.1021/nl025679e
Krupke, R.; Malik, S.; Weber, H. B.; Hampe, O.; Kappes, M. M.; Loehneysen, H. v.
2002. Nano letters, 2 (10), 1161–1164. doi:10.1021/nl025679e
2000
Field induced and spontaneous sub-gap in [110] and [100] oriented YBCO films: indication for a order parameter
Deutscher, G.; Dagan, Y.; Kohen, A.; Krupke, R.
2000. Physica / C, 341-348, 1629–1632. doi:10.1016/S0921-4534(00)01488-X
Deutscher, G.; Dagan, Y.; Kohen, A.; Krupke, R.
2000. Physica / C, 341-348, 1629–1632. doi:10.1016/S0921-4534(00)01488-X
[110] tunneling under applied magnetic fields into Y Ba Cu O : Possible evidence for a field-induced id gap component
Dagan, Y.; Krupke, R.; Deutscher, G.
2000. epl, 51 (1), 116–121. doi:10.1209/epl/i2000-00343-4
Dagan, Y.; Krupke, R.; Deutscher, G.
2000. epl, 51 (1), 116–121. doi:10.1209/epl/i2000-00343-4
Determination of the superconducting gap in YBa Cu O by tunneling experiments under magnetic fields
Dagan, Y.; Krupke, R.; Deutscher, G.
2000. Physical review / B, 62 (1), 146–149. doi:10.1103/PhysRevB.62.146
Dagan, Y.; Krupke, R.; Deutscher, G.
2000. Physical review / B, 62 (1), 146–149. doi:10.1103/PhysRevB.62.146
1999
A systematic approach to reduce macroscopic defects in c-axis-oriented YBCO films
Krupke, R.; Barkay, Z.; Deutscher, G.
1999. Physica / C, 317-318, 536–539. doi:10.1016/S0921-4534(99)00119-7
Krupke, R.; Barkay, Z.; Deutscher, G.
1999. Physica / C, 317-318, 536–539. doi:10.1016/S0921-4534(99)00119-7
A systematic approach to reduce macroscopic defects in c-axis oriented YBCO films
Krupke, R.; Barkay, Z.; Deutscher, G.
1999. Physica / C, 315 (1-2), 99–106. doi:10.1016/S0921-4534(99)00199-9
Krupke, R.; Barkay, Z.; Deutscher, G.
1999. Physica / C, 315 (1-2), 99–106. doi:10.1016/S0921-4534(99)00199-9
Spontaneous and Field Enhanced Sub-Gaps in In-Plane Oriented (100)-Y Ca Ba Cu O / In Tunnel Junctions
Krupke, R.; Deutscher, G.
1999. Journal of low temperature physics, 117 (3/4), 533–537. doi:10.1023/A:1022527329560
Krupke, R.; Deutscher, G.
1999. Journal of low temperature physics, 117 (3/4), 533–537. doi:10.1023/A:1022527329560
Anisotropic Magnetic Field Dependence of the Zero-Bias Anomaly on In-Plane Oriented [100] Y Ba Cu O /In Tunnel Junctions
Krupke, R.; Deutscher, G.
1999. Physical review letters, 83 (22), 4634–4637. doi:10.1103/PhysRevLett.83.4634
Krupke, R.; Deutscher, G.
1999. Physical review letters, 83 (22), 4634–4637. doi:10.1103/PhysRevLett.83.4634
1997
On the origin of hole formation in YBCO films
Krupke, R.; Barkay, Z.; Deutscher, G.
1997. Physica / C, 289 (1-2), 146–150. doi:10.1016/S0921-4534(97)01473-1
Krupke, R.; Barkay, Z.; Deutscher, G.
1997. Physica / C, 289 (1-2), 146–150. doi:10.1016/S0921-4534(97)01473-1
Superconducting, structural and surface properties of GdBaCuO thin films deposited by electron cyclotron resonance supported sputtering
Krupke, R.; Ulmer, G.; Schneider, R.; Kurzmeier, M.; Linker, G.; Geerk, J.
1997. Physica C, 279, 153–64
Krupke, R.; Ulmer, G.; Schneider, R.; Kurzmeier, M.; Linker, G.; Geerk, J.
1997. Physica C, 279, 153–64
Theses
-
Electrically Driven Light Emission from Carbon Nanotubes with Quantum Defects
M. Li, Ph.D.-thesis (2024) -
Enhancing the Light Absorption of Solar Cells with Carbon Nanotubes
L. Wieland, Ph.D.-thesis (2023) -
Global Alignment of Single-Wall Carbon Nanotubes via Dead-End Filtration
C. Rust, Ph.D.-thesis (2023) -
Near-infrared photodetection in nanocarbon materials
N.A. Peyyety, Ph.D.-thesis (2023) -
Nanocarbon Devices and Sensors
S. Kumar, Ph.D.-thesis (2022) -
Near Infrared Photocurrent Spectroscopy on Carbon Nanotube Devices
P.B. Selvasundaram, Ph.D.-thesis (2020) -
Andreev processes in two-terminal and multiterminal graphene based hybrid junctions
P. Pandey, Ph.D.-thesis (2019) -
Gate-defined superconducting nanostructures in bilayer graphene weak links
R. Kraft, Ph.D.-thesis (2019) -
In situ TEM studies on the graphitization and growth of nanocrystalline graphene from polymers
S.K. Chethala Neelakandhan, Ph.D.-thesis (2019) -
Advanced Dielectrophoresis for High-Performance Single-Walled Carbon Nanotube Electronics
W. Li, Ph.D.-thesis (2017) -
Waveguide-Integrated Electrically Driven Light-Emitting Carbon Nanotubes
F. Pyatkov, Ph.D.-thesis (2017) -
Quantum Transport and Shot Noise in Graphene-Boron Nitride Heterostructures
J. Mohrmann, Ph.D.-thesis (2016) -
STM Characterization of Phenylene-Ethynylene Oligomers on Au(111) and their Integration into Carbon Nanotube Nanogaps
C. Thiele, Ph.D.-thesis (2014) -
Graphene and Carbon Nanotube Based Optoelectronic Devices
M. Engel, Ph.D.-thesis (2012) -
Untersuchung der elektronenstrahinduzierten Leitwertsänderung in einwandigen metallischen Kohlenstoffnanoröhren
F. Haas, Diploma thesis (2010) -
Wasserstoffdetektion mit einwandigen halbleitenden Kohlenstoffnanoröhren
M. Ganzhorn, Diploma thesis (2009) -
Elektrolumineszenz organischer Moleküle nach Kontaktierung mit Kohlenstoff-Nanoröhren
C.W. Marquardt, Ph.D.-thesis (2009) -
Elektrolumineszenz von metallischen Kohlenstoffnanoröhren
S. Essig, Diploma thesis (2009) -
Dielectrophoresis of Single-Walled Carbon Nanotubes
S. Blatt, Ph.D.-thesis (2008) -
Leitfähigkeit von Bündeln metallischer Kohlenstoff-Nanoröhren
I. Klugius, Diploma thesis (2007) -
Electron-Phonon Coupling in Single-Walled Carbon Nanotubes
M. Oron-Carl, Ph.D.-thesis (2006) -
Transporteigenschaften von Bündeln metallischer Kohlenstoff-Nanoröhren
C. W. Marquardt, Diploma thesis (2006) -
Zur kontrollierten Kontaktierung von einwandigen Kohlenstoff-Nanoröhren
D. Secker, Diploma thesis (2003) -
Evidence for a Complex Order Parameter on the Surface of (100)-In-plane Oriented Y1-XCaXBa2Cu3O7-Y Superconducting Thin Films From Tunneling Experiments
R. Krupke, Ph.D.-thesis (1999) -
Präparation von 123-Filmen durch Kathodenzerstäubung im ECR-Plasma
R. Krupke, Diploma thesis (1994)