R. Danneau danneau

Dr. Romain Danneau

  • Karlsruhe Institute of Technology (KIT)
    Institute for Quantum Materials and Technologies
    Hermann-von-Helmholtz-Platz 1
    76344 Eggenstein-Leopoldshafen, Germany

Scientific area of expertise:

Quantum transport and noise, low temperature solid state physics, mesoscopic physics, graphene, carbon nanotubes, proximity-induced superconductivity, topology in condensed matter, low noise electronics and microwave measurements.

 

Education:

2003 Ph.D. in Physics, Joseph Fourier University, Grenoble, France.

2000 Master’s degree in Physics, University of Orsay, Paris, France.

 

Research experience:

Since January 2020: Permanent scientist at the Institute for Quantum Materials and Technologies at KIT, Karlsruhe, Germany.

2015-2019: Permanent scientist at the Institute of Nanotechnology at KIT, Karlsruhe, Germany.

2008-2015: Research group leader at the Institute of Nanotechnology at KIT on "Electronic properties of graphene", Karlsruhe, Germany.

2006-2008: Postdoc in Pertti Hakonen's group at the Low Temperature Laboratory, Helsinki University of Technology (now Aalto University), Helsinki, Finland.

2004-2006: Postdoc and Australia Research Council fellow in Alex Hamilton's group at the School of Physics, University of New South Wales, Sydney, Australia.

2000-2003: PhD student at the Centre de Recherche sur les Très Basses Temperature, CNRS Grenoble, France. Title: "Dynamics and structures of charge density waves". Supervisors: Pierre Monceau and Roland Currat. Referees: Thierry Giamarchi, Thierry Klein and Sylvain Ravy.

2000: Master's project at SPEC-CEA Saclay, France. Title: "Contribution to the resistivity of a single domain wall in a ferromagnetic nanostructure". Supervisors: Olivier Klein and Michel Viret. Referees: Albert Fert and Bernard Roulet.

 

Grants (DFG projects: GEPRIS) and awards :

2022-2025: IDEX-IRGA-KIT (collaboration between Grenoble-Alpes University and KIT) project together with Clemens Winkelmann. Title: "Heat transport in graphene-based quantum nanoelectronic devices" (200000€).

2021-2024: DFG project together with Detlef Beckmann and Wolfgang Belzig. Title: "Topological Graphene Multiterminal Josephson Junctions" (460000€).

2016-2019: DFG project. Title: "Tailoring supercurrent confinement in tunable superconducting weak links" (210000€).

2014-2016: Member of the EU educational network Tempus IV XNEM from the FP7 program: responsible for the workpackage "Development of lecture and practical teaching material on nanosynthesis, nanofabrication, nanodevices and characterization of nanomaterials" (100000€).

2012: Invited professorship from Sejong University, Seoul, Korea for lecturing on "Physics of graphene" (one month).

2011 "Grant for large equipments" from the Karlsruhe Institute of Technology-DFG. Title: “Cryo-free dilution refrigerator” (456000€) .

2011-2013: Member of the EU network MMM@HPC from the FP7 program: responsible for the "carbon nanoelectronics" workpackage (360000€).

2009 "Grant for small equipment" from KIT-DFG excellence initiatives. Title: "High frequency electronics" (150000€).

2005 Australian Research Council Discovery Project Award Fellowship Project N° DP0666405. Title: "Electronic with spin: Investigating spin-dependent electrical properties of semiconductor nano-devices". Funding: Au$ 345000 for three years (215000 €).

 

Publications (Metrics):

Published articles:

 

55. Magnetointerferometry of multiterminal Josephson junctions.

R. Mélin, C.B. Winkelmann & R. Danneau.

Phys. Rev. B 109, 125406 (2024).

 

54. Andreev and normal reflections in gapped bilayer graphene-superconductor junctions.

P. Ram, D. Beckmann, R. Danneau & W. Belzig.

Phys. Rev. B 108, 184510 (2023).

 

53. Proposal for detecting the π−shifted Cooper quartet current.

R. Mélin, R. Danneau & C.B. Winkelmann.

Phys. Rev. Res. 5, 033124 (2023).

 

52. Energy distribution controlled ballistic Josephson junction.

P. Pandey, D. Beckmann & R. Danneau.

Phys. Rev. B 106, 214503 (2022).

 

51. Spin and valley degrees of freedom in bilayer graphene quantum point contacts: Zeeman splitting and interaction effects.

V. Gall, R. Kraft, I.V. Gornyi & R. Danneau.

Phys. Rev. Res. 4, 023142 (2022).

 

50. Phase-dependent microwave response of a graphene Josephson junction.

R. Haller, G. Fülöp, D. Indolese, J. Ridderbos, R. Kraft, L.Y. Chueng, J.H. Ungerer, K. Watanabe, T. Taniguchi, D. Beckmann, R. Danneau, P. Virtanen & C. Schönenberger.

Phys. Rev. Res. 4, 013198 (2022).

 

49. Critical current fluctuations in graphene Josephson junctions.

M.T. Haque, M. Will, M. Tomi, P. Pandey, M. Kumar, F. Schmidt, K. Watanabe, T. Taniguchi, R. Danneau, G. Steele & P. Hakonen.

Sci. Rep. 11, 19900 (2021).

 

48. Ballistic graphene Cooper pair splitter.

P. Pandey, R. Danneau & D. Beckmann.

Phys. Rev. Lett. 126, 147701 (2021).

 

47. Anomalous cyclotron motion in graphene superlattice cavities.

R. Kraft, M.-H. Liu, P.B. Selvasundaram, S.-C. Chen, R. Krupke, K. Richter & R. Danneau.

Phys. Rev. Lett. 125, 217701 (2020).

 

46. Electrostatic superlattices on scaled graphene lattices.

S.-C. Chen, R. Kraft, R. Danneau, K. Richter & M.-H. Liu.

Commun. Phys. 3, 71 (2020).

 

45. Berry phase in multiterminal superconducting quantum dots.

B. Douçot, R. Danneau, K. Yang, J.-G. Caputo & R. Mélin.

Phys. Rev. B 101, 035411 (2020).

 

44. Andreev reflection in ballistic normal metal/graphene/superconductor junctions.

P. Pandey, R. Kraft, R. Krupke, D. Beckmann & R. Danneau.

Phys. Rev. B 100, 165416 (2019).

 

43. Investigation on metal-oxide graphene field-effect transistors with clamped geometries.

M.A. Giambra, C. Benz, F. Wu, M. Thürmer, G. Balachandran, A. Benfante, R. Pernice, H. Pandey, M. Boopathi, M.H. Jang, J.-H. Ahn, S. Stivala, E. Calandra, A. Busacca, W.H.P. Pernice & R. Danneau.

IEEE J. Elec. Dev. Soc. 7, 964 (2019).

 

42. Engineering the Floquet spectrum of multiterminal superconducting quantum dots.

R. Mélin, R. Danneau, K. Yang, J.-G. Caputo & B. Douçot.

Phys. Rev. B 100, 035450 (2019).

 

41. Graphene Field Effect Transistors employing different thin oxide films: a comparative study.

M.A. Giambra, A. Benfante, R. Pernice, V. Miseikis, F. Fabbri, C. Reitz, W.H.P. Pernice, R. Krupke, E. Calandra, S. Stivala, A.C. Busacca & R. Danneau.

ACS Omega 4, 2256 (2019).

 

40. Valley subband splitting in graphene bilayer quantum point contacts.

R. Kraft, I.V. Krainov, V. Gall, A.P. Dimitriev, R. Krupke, I.V. Gornyi & R. Danneau.

Phys. Rev. Lett. 121, 257703 (2018).

 

39. Tuning Anti-Klein to Klein tunneling in bilayer graphene.

R. Du, M.-H. Liu, J. Mohrmann, F. Wu, R. Krupke, H. von Löhneysen, K. Richter & R. Danneau.

Phys. Rev. Lett. 121, 127706 (2018).

 

38. Layout influence on microwave performances of Graphene Field Effect Transistors.

M.A. Giambra, L. Zeiss, A. Benfante, R. Pernice, W.H.P. Pernice, M.H. Jang, J.-H. Ahn, A.C. Cino, S. Stivala, E. Calandra, A.C. Busacca & R. Danneau.

Electron. Lett. 54, 984 (2018).

 

37. Tailoring supercurrent confinement in graphene bilayer weak links.

R. Kraft, J. Mohrmann, R. Du, P.B. Selvasundaram, M. Irfan, U.N. Kanilmaz, F. Wu,  D. Beckmann, H. von Löhneysen, R. Krupke, A. Akhmerov, I. Gornyi & R. Danneau.

Nat. Commun. 8,1722 (2018).

 

36. Employing microwave graphene field effect transistors for infrared radiation detection.

A. Benfante, M.A. Giambra, R. Pernice, S. Stivala, E. Calandra, A. Parisi, A.C. Cino, S. Dehm, R. Danneau, R. Krupke & A.C. Busacca.

IEEE Photonics 10, 6801407 (2018).

 

35. Persistent gate hysteresis in mica-graphene van der Waals heterostructures.

J. Mohrmann, K. Watanabe, T. Taniguchi & R. Danneau.

Nanotechnology 26, 015202 (2015).

 

34. Charge distribution in metallic single walled carbon nanotube-graphene junctions.

P.T. Robert & R. Danneau.

New. J. Phys. 16, 013019 (2014).

 

33. High-quality Si3N4 circuits as a platform for graphene-based nanophotonic devices.

N. Gruhler, C. Benz, H. Jang, J.-H. Ahn, R. Danneau & W.H.P. Pernice.

Opt. Express 21, 31678 (2013).

 

32. Graphene on boron nitride microwave transistors driven by graphene nanoribbon back-gates.

C. Benz, M. Thürmer, F. Wu, Z. Ben Aziza, J. Mohrmann, H. von Löhneysen, K. Watanabe, T. Taniguchi & R. Danneau.

Appl. Phys. Lett. 102, 033505 (2013).

 

31. Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling.

A. Fay, R. Danneau, J.K. Viljas, F. Wu, M.Y. Tomi, J. Wengler, M. Wiesner & P.J. Hakonen.

Phys. Rev. B 84, 245427 (2011).

 

30. Graphene microwave transistors on sapphire substrates.

E. Pallecchi, C. Benz, A.C. Betz, H. von Löhneysen, B. Plaçais & R. Danneau.

Appl. Phys. Lett. 99, 113502 (2011).

 

29. Shot noise suppression and hopping conduction in graphene nanoribbons.

R. Danneau, F. Wu, M.Y. Tomi, J.B. Oostinga, A.F. Morpurgo & P.J. Hakonen.

Phys. Rev. B 82, 161405(R) (2010).

 

28. RF-electrometer using a carbon nanotube resonant tunnelling transistor.

L.G. Lechner, F. Wu, R. Danneau, S.E.S. Andresen & P.J. Hakonen.

J. Appl. Phys. 107, 084316 (2010).

 

27. Single-walled carbon nanotube weak links in Kondo regime with zero-field splitting.

F. Wu, R. Danneau, P. Queipo, E. Kauppinen, T. Tsuneta & P.J. Hakonen.

Phys. Rev. B 79, 073404 (2009).

 

26. Highly sensitive and broadband carbon nanotube radio-frequency single-electron transistor.

S.E.S. Andresen, F. Wu, R. Danneau, D. Gunnarsson & P.J. Hakonen.

J. Appl. Phys. 104, 033715 (2008).

 

25.  Shot noise in ballistic graphene.

R. Danneau, F. Wu, M.F. Craciun, S. Russo, M.Y. Tomi, J. Salmilehto, A.F. Morpurgo & P. J. Hakonen.

Phys. Rev. Lett. 100, 196802 (2008).

 

24. The effect of screening long range Coulomb interactions on the metallic behavior in two-dimensional hole systems.

L.H. Ho, W.R. Clarke, A.P. Micolich, R. Danneau, O. Klochan, M.Y. Simmons, A.R. Hamilton, M. Pepper & D.A. Ritchie.

Phys. Rev. B 77, 201402(R) (2008).

 

23. 0.7 structure and zero bias anomaly in ballistic hole quantum wires.

R. Danneau, O. Klochan, W.R. Clarke, L.H. Ho, A.P. Micolich, M.Y. Simmons, A.R. Hamilton, M. Pepper & D.A. Ritchie.

Phys. Rev. Lett. 100, 016403 (2008).

 

22. Ballistic transport in induced one-dimensional hole systems.

O. Klochan, W.R. Clarke, R. Danneau, A.P. Micolich, L.H. Ho, A.R. Hamilton, K. Muraki & Y. Hirayama.

Appl. Phys. Lett. 89, 092105 (2006).

 

21. Zeeman splitting in ballistic hole quantum wires.

R. Danneau, O. Klochan, W.R. Clarke, L.H. Ho, A.P. Micolich, M.Y. Simmons, A.R. Hamilton, M. Pepper, D.A. Ritchie & U. Zülicke.

Phys. Rev. Lett. 97, 016403 (2006).

 

20. Conductance quantization and the 0.7x2e2/h conductance anomaly in one-dimensional hole systems.

R. Danneau, W.R. Clarke, O. Klochan, A.P. Micolich, A.R. Hamilton, M.Y. Simmons, M. Pepper & D.A. Ritchie.

Appl. Phys. Lett. 88, 012107 (2006).

 

19. Sliding-induced decoupling and charge transfer between the coexisting Q1 and Q2 charge density waves in NbSe3.

A. Ayari, R. Danneau, H. Requardt, L. Ortega, J.E. Lorenzo, P. Monceau, R. Currat, S. Brazovskii & G. Grübel.

Phys. Rev. Lett. 93, 106404 (2004).

 

18. Reply to comment on Motional ordering of a charge density wave in the sliding state.

R. Danneau, A. Ayari, D. Rideau, H. Requardt, J.E. Lorenzo, L. Ortega, P. Monceau, R. Currat & G. Grübel.

Phys. Rev. Lett. 91, 049704 (2003).

 

17. Motional ordering of a charge density wave in the sliding state.

R. Danneau, A. Ayari, D. Rideau, H. Requardt, J.E. Lorenzo, L. Ortega, P. Monceau, R. Currat & G. Grübel.

Phys. Rev. Lett. 89, 106404 (2002).

 

16. Individual domain wall resistance in submicron ferromagnetic structures.

R. Danneau, P. Warin, J.P. Attané, Y. Petej, C. Beigné, C. Fermon, O. Klein, A. Marty, F. Ott, Y. Samson & M. Viret.

Phys. Rev. Lett. 88, 157201 (2002).

 

15. Deep in situ dry-etch monitoring of III-V multilayer structures using laser reflectometry and reflectivity modelling.

H. Moussa, R. Danneau, C. Mériadec, L. Manin, I. Sagnes & R. Raj.

J. Vac. Sci. Technol. A 20(3), 748 (2002).

 

Published proceedings:

 

14. Shot noise measurements in graphene.

R. Danneau, F. Wu, M.F. Craciun, S. Russo, M.Y. Tomi, J. Salmilehto, A.F. Morpurgo & P.J. Hakonen.

Solid State Commun. 149, 1050 (2009).

 

13. Controlling supercurrents using single-walled carbon nanotube weak links.

F. Wu, R. Danneau, P. Queipo, E. Kauppinen, T. Tsuneta & P.J. Hakonen.

J. Phys.: Conf. Series 150, 052282 (2009).

 

12. Evanescent wave transport and shot noise in graphene: ballistic regime and effect of disorder.

R. Danneau, F. Wu, M.F. Craciun, S. Russo, M.Y. Tomi, J. Salmilehto, A.F. Morpurgo & P.J. Hakonen.

J. Low. Temp. Phys. 153, 374 (2008).

 

11. 0.7 structure and zero bias anomaly in ballistic one-dimensional hole systems.

R. Danneau, O. Klochan, W.R. Clarke, L.H. Ho, A.P. Micolich, M.Y. Simmons, A.R. Hamilton, M. Pepper & D.A. Ritchie.

Physica E 40, 1501 (2008).

 

10. Screening long range Coulomb interactions in two-dimensional hole systems using a bilayer heterostructure.

L.H. Ho, W.R. Clarke, R. Danneau, O. Klochan, A.P. Micolich, A.R. Hamilton, M.Y. Simmons, M. Pepper & D.A. Ritchie.

Physica E 40, 1700 (2008).

 

9. Anisotropic Zeeman splitting in ballistic one-dimensional hole systems.

R. Danneau, O. Klochan, W.R. Clarke, L.H. Ho, A.P. Micolich, M.Y. Simmons, A.R. Hamilton, M. Pepper, D.A. Ritchie & U. Zülicke.

AIP Conference Proceedings 893, 699 (2007).

 

8. Conductance quantization in induced one-dimensional hole systems.

O. Klochan, W.R. Clarke, R. Danneau, A.P. Micolich, L.H. Ho, A.R. Hamilton, K. Muraki & Y. Hirayama.

AIP Conference Proceedings 893, 681 (2007).

 

7. Ballistic transport in one-dimensional bilayer hole systems.

R. Danneau, W. R. Clarke, O. Klochan, L.H. Ho, A.P. Micolich, A.R. Hamilton, M.Y. Simmons, M. Pepper & D.A. Ritchie.

Physica E 34, 550 (2006).

 

6. Switching effects and sliding-induced charge transfer between the coexisting Q1 and Q2 charge density waves in NbSe3.

A. Ayari, R. Danneau, H. Requardt, L. Ortega, J.E. Lorenzo, P. Monceau, R. Currat, S. Brazovskii & G. Grübel.

J. Phys. IV 131, 125 (2005).

 

5. X-ray diffraction study of the transient structure of sliding charge density waves in NbSe3.

H. Requardt, D. Rideau, R. Danneau, A. Ayari, F. Ya Nad, J.E. Lorenzo, P. Monceau, R. Currat, C. Detlefs, D. Smilgies & G. Grübel.

J. Phys. IV 12, Pr9-181 (2002).

 

4. Increase of the charge density wave phase coherence in the sliding and the mode-locked state.

R. Danneau, A. Ayari, D. Rideau, H. Requardt, J.E. Lorenzo, L. Ortega, P. Monceau, R. Currat & G. Grübel.

J. Phys. IV 12, Pr9-177 (2002).

 

3. Studies of the dynamics in charge density wave systems using inelastic X-ray scattering with meV-energy-resolution.

H. Requardt, J.E. Lorenzo, R. Danneau, R. Currat & P. Monceau.

J. Phys. IV 12, Pr9-39 (2002).

 

Invited review articles:

 

2. The 0.7 anomaly in one-dimensional hole quantum wires.

A.R. Hamilton, R. Danneau, O. Klochan, W.R. Clarke, A.P. Micolich, L.H. Ho, M.Y. Simmons, D.A. Ritchie, M. Pepper, K. Muraki & Y. Hirayama.

J. Phys. Condens. Matter. 20, 164205 (2008).

 

1. Quantum transport in one-dimensional GaAs hole systems.

A.R. Hamilton, O. Klochan, R. Danneau, W.R. Clarke, L.H. Ho, A.P. Micolich, M.Y. Simmons, M. Pepper, D.A. Ritchie, K. Muraki & Y. Hirayama.

Int. J. Nanotechnology 5, 318 (2008).